Multi-Stage Voting, Sequential Elimination and Condorcet Consistency

Parimal Kanti Bag
Department of Economics
National University of Singapore

Hamid Sabourian
Faculty of Economics
University of Cambridge

and

Eyal Winter
Economics Department
The Hebrew University of Jerusalem

Abstract
A class of voting procedures based on repeated ballots and elimination of one candidate in each round is shown to always induce an outcome in the top cycle and is thus Condorcet consistent, when voters behave strategically. This is an important class as it covers multi-stage, sequential elimination extensions of all standard one-shot voting rules (with the exception of negative voting), the same one-shot rules that would fail Condorcet consistency. The necessity of repeated ballots and sequential elimination are demonstrated by further showing that Condorcet consistency would fail in all standard voting rules that violate one or both of these conditions.
Multi-Stage Voting, Sequential Elimination and Condorcet Consistency\(^1\)

1 Introduction

Any voting rule as a means of reaching collective decisions can be assessed by several alternative criteria. One such criterion is whether the voting rule can result in an outcome that is majority-preferred to any other candidate on binary comparisons – known as the Condorcet winner; henceforth CW. This property, called Condorcet consistency, is “widely regarded as a compelling democratic principle” (Moulin [18]; sect. 9.4); voting rules with this property will be described as Condorcet consistent (or, CC).

In this paper, we will argue that a large class of voting procedures based on repeated ballots and elimination of one candidate in each round, henceforth called multi-stage, sequential elimination (or simply referred as, sequential elimination) voting, will lead uniquely to the CW being elected, if it exists, when voters behave strategically. Moreover, if there is no CW, the equilibrium in this class of voting will elect a candidate in the ‘top cycle,’ that is, on majority comparison the winning candidate would dominate any other candidate either directly or indirectly.

Top cycle property (and Condorcet consistency) have been obtained for the well-known class of binary voting (see McKelvey and Niemi [15]).\(^2\) However, such results are not directly helpful as many multi-stage vote procedures are not binary. When voters vote over more than two candidates simultaneously in the stage games of any multi-stage voting, the usual miscoordination problem of simultaneous voting becomes even more pronounced. But based on an equilibrium refinement and applying some carefully constructed induction arguments, the top cycle property can be established for a large class of sequential elimination voting that are not

\(^1\)We thank two anonymous referees of this journal and the editor, Alessandro Lizzeri, for very detailed comments and suggestions on earlier drafts. At various stages the work has been presented at the 2003 Econometric Society European Meetings, 2005 Wallis Political Economy Conference, 2005 Models and Methods Conference at the Indian Statistical Institute, 2006 Econometric Society Far Eastern Meetings, 2008 Workshop on Game Theory (Milan), and seminars at Birmingham, Cambridge, Essex, Keele, LSE, NUS (Singapore), Oxford and York universities. We thank the conference and seminar participants. For errors or omissions, we remain responsible.

\(^2\)The definitions of binary voting and various other voting rules relevant for this paper are collated in a glossary at the end of the Appendix.
necessarily binary.

The broad principles underlying our multi-stage voting can be understood by considering one specific voting rule that we call the *weakest link voting*: Voting occurs in rounds with all the voters simultaneously casting their votes for one candidate in each successive round. In any round the candidate with minimal votes is eliminated, with any ties broken by a deterministic tie-breaking rule. Continue with this process to pick a winner.\(^3\) The weakest link voting can be interpreted as a natural sequential elimination extension of plurality voting, with elimination of the worst plurality loser in each round. By carrying out similar eliminations in each round based on an appropriately defined elimination rule, one can extend any single-round voting to its sequential elimination equivalent.

For multi-stage, sequential elimination voting to be *CC*, or yield a top cycle outcome, it is sufficient (and may even be almost necessary) that any (group of) majority voters have some minimal collective influence: the voting rule must be such that by coordinating their votes in any round a majority can always ensure that any particular candidate who survived up to that round is not eliminated in that round; further, such vote coordinations by the majority must be “stable” in the sense that should the majority fail to choose some appropriate coordination of votes that may lead to the particular candidate’s elimination, there will be at least one member of the majority group who will have an incentive, if his aim were to protect that candidate, to further deviate by changing his vote. We call these twin requirements, the *majority non-elimination* (MNE) property.

We show that the MNE property will be satisfied by multi-stage, sequential elimination versions of all familiar single-round voting procedures with one exception – the sequential elimination analogue of negative voting. To understand how majority influence works, consider for instance multi-stage analogue of scoring rules which eliminate, at any round, only one candidate with the lowest total score. Clearly, for any candidate and any majority, placing the candidate at the top by

\(^3\)The Conservative Party in Great Britain roughly follows this procedure to choose its leader: the party’s parliamentary members vote in successive rounds to reduce first a small number of candidates to only two candidates, and eventually the party members vote to elect the final winner. See *http://politics.guardian.co.uk/Print/0,3858,4106604,00.html*. Also, the last contest in 2005 to select the host city for the 2012 Olympic games had the characteristics of weakest link voting (London emerged the winner after four rounds of elimination). See *http://news.bbc.co.uk/sport1/hi/front_page/4655555.stm*.

2
every member of a majority is stable; furthermore the candidate will have a total score that is strictly higher than the average score of the remaining candidates, even if every voter outside the majority places that candidate at the bottom, if the following property holds: the scores in any round for various ranks be such that the average of the two scores corresponding to the top and the bottom ranks weakly exceeds the average score for all the intermediate ranks combined (this property clearly holds for the weakest link and the sequential elimination analogue of Borda). Thus, if this property holds the majority is able to protect the candidate from being eliminated and hence satisfies the \textbf{MNE} property.

Finally, we will also argue why in general \textit{sequential elimination} and \textit{repeated ballots} – the two characteristics of our multi-stage voting – are important for Condorcet consistency. All standard one-shot voting rules and several multi-stage voting lack one or both these characteristics and will fail to be \textit{CC}.

As we mentioned earlier, binary voting rules are also \textit{CC}. In the standard formulation of such rules, the winning alternative at each stage is matched against another alternative in the next stage. Our result clarifies that in multi-round voting what is important for Condorcet consistency (and top cycle) is not that each stage picks only “one winner,” but rather that there is only “one loser.” In fact, in binary voting there is also only “one loser” (as well as “one winner”) at each stage.

More broadly, our multi-stage voting framework and results should be seen as a significant progress beyond the special class of binary voting (e.g., [15], [17], [2], [11], [12], [10], [4] and [5]). In contrast to only two choices from which to pick at each round in binary voting, in our multi-stage schemes there is virtually no exogenous restriction on how many choices might be considered. Thus, our multi-stage voting games are complementary to binary voting (sequential binary voting being the only common element). In our setup, the sets of candidates (i.e., choices) available at later rounds evolve endogenously (rather than determined by an exogenous ordering of agendas in binary voting) through equilibrium behavior at earlier rounds. Furthermore, in our multi-stage schemes the voting rule need not remain the same in every round. Of course, with the simple binary comparison lacking, our multi-stage voting poses a far greater challenge as the backwards induction arguments involving iterated deletion of dominated strategies do not necessarily generate a unique continuation outcome in each subgame (as in binary voting; see [15]). It is of course possible to generalize our multi-stage schemes to include all binary voting rules as special cases; in section 3.3 we describe one such generalization that preserves the
top cycle property.

The analysis in this paper assumes complete information. One may ask why do we care about properties of voting rules with full information and where we know what should be selected (a CW)? First, even when the choice of an ideal social alternative is not an issue, the problem of vote coordinations, and as a result the potential multiplicity of voting outcomes, have been a major concern in the voting literature. Hence, any satisfactory resolution of this problem should be viewed as a positive contribution. Second, understanding how to deal with the complexity of coordination under complete information is a necessary step to deal with the more difficult challenges of incomplete information.\footnote{In voting with incomplete information, beside the coordination problem, there is also the additional issue of information aggregation. Recent literature (e.g., [8], [22], [3]) has mainly concerned with this latter issue.} Third, studies of voting rules, because of their extensive use, are of considerable practical relevance. Finally, our analysis should also offer a useful normative guide as to how to design voting games, or modify some of the existing vote methods, to achieve Condorcet consistency as a social objective.

2 The voting rules and equilibrium solutions

Voting games

The set of candidates is denoted as \mathcal{K} with cardinality k, and the voter set is denoted as \mathcal{N} with cardinality n, where both k and n are at least three. Throughout we assume n to be an odd number, but this can be relaxed (see footnote 6). Also for simplicity of exposition, $\mathcal{K} \cap \mathcal{N} = \emptyset$. Each voter $i \in \mathcal{N}$ has a strict, ordinal preference ordering over the candidates given by \succ_i. The voters have complete information about preferences.

The class of voting games we consider is quite general and is described as follows. Each voting rule consists of the voters/players voting in at most J rounds/stages, $J < k$. At each stage the voters simultaneously vote (i.e., take an action) and at least one candidate is removed. At the end of a maximum of J rounds of voting one candidate survives who is the winner. If C is the set of candidates left at any stage $j \leq J$ with $|C| \geq 2$ (denoting cardinality) then a choice for voter i at that stage consists of choosing an element from an arbitrary choice set $A_i(C, j)$. Moreover, if each i chooses $a_i \in A_i(C, j)$ at this stage then we shall denote the set of eliminated
candidate(s) by \(e(a^j, C) \subset C\) where \(a^j = (a_1, ..., a_n)\) is the profile of votes at stage \(j\). So if the voting finishes in some \(\mathcal{J} \leq J\) rounds and voters choose the sequence of votes \(\{a^j\}_{j=1}^J\), then the winning candidate is \(w \notin \bigcup_{j=1}^J e(a^j, C)\).

For any \(j \leq J\) let \(h^j = (a^1, ..., a^{j-1})\) be a complete history (description) of the actual voting decisions up to stage \(j\). Define \(\mathcal{H}^j\) to be the set of histories at round \(j\) and \(\mathcal{H} = \bigcup_j \mathcal{H}^j\) be the set of all histories, with the convention that \(\mathcal{H}^0\) refers to the initial null history. Also, let \(C(h)\) be the set of remaining candidates at \(h \in \mathcal{H}\).

Now a (pure) strategy for voter \(i\) is a function \(s_i : \mathcal{H} \rightarrow \bigcup_{i,C} A_i(C, j)\) such that \(s_i(h) \in A_i(C(h), j)\) if \(h \in \mathcal{H}^j\). Also, denote the set of (pure) strategies of voter \(i\) by \(S_i\) and let \(S = \times_i S_i\).

The above set of games clearly includes the weakest link voting, and more generally any multi-stage, sequential elimination voting, and any single-round voting. In the case of the weakest link, the number of voting rounds \(J\) is \(k-1\), at each stage one candidate is eliminated so that \(|e(a^i, C)| = 1\) and the set of choices \(A_i(C, j) = C\). More generally, any voting game belongs to our class of multi-stage voting if and only if it has \(k-1\) stages and at each stage one candidate is eliminated.

In the case of single-round voting, \(J = 1\), all voters submit their strategies at the first stage. In some (such as plurality rule, approval voting, Borda rule and negative voting), all the candidates except one are eliminated simultaneously. In some others, such as instant runoff voting, the process of elimination is in one or more attempts following a single ballot.

Also, included in our voting games will be the class of repeated voting rules in which more than one candidate are eliminated in some round. This includes both the class of games in which the number of rounds \(J\) is fixed and less than \(k-1\) (such as plurality runoff voting with \(J = 2\)), and the case in which the number of rounds \(J\) is endogenous (for example, repeated procedures, such as exhaustive ballot, have the following majority vote trigger property: if at any round a candidate receives majority votes then he is immediately declared the winner and voting stops).

The equilibrium

Since the voting games we consider may have a dynamic structure, we require our equilibrium concept to be subgame perfect. In addition, as is common in the literature on voting, we need to eliminate choices that are weakly dominated, otherwise there are a large number of trivial equilibria in which each voter’s choice is immaterial. Therefore, an equilibrium in our setup is a strategy profile for the
voters that is a subgame perfect equilibrium and is such that at each stage the votes of each player is not weakly dominated given the equilibrium continuation strategies of others in future stages.

In other words, any equilibrium strategy profile \(s^* \in S \) in a voting game must have the following properties. In any subgame at the final stage \(J \), \(s^* \) must be a weakly undominated Nash equilibrium in the subgame. In any subgame starting with stage \(J - 1 \), the voters’ strategies must be an undominated Nash equilibrium in the subgame given that the voters play the game according to \(s^* \) in the continuation game. This backward elimination procedure continues all the way to stage 1.

Formally, for any history \(h \in \mathcal{H} \), let \(\Gamma(h) \) be the subgame at \(h \) and \(w(s, h) \) be the candidate elected in the subgame \(\Gamma(h) \) if the voters follow strategy profile \(s \) in this subgame. Also, for any strategy profile \(s \in S \) and any history \(h \in \mathcal{H} \), define the set of strategies for all players other than \(i \) that are consistent with \(s \) in every subgame after \(h \) by

\[
\tilde{S}_{-i}(h, s) = \{ s'_{-i} \in S_{-i} \mid s'_{-i}(h, h') = s_{-i}(h, h') \text{ for all non-empty } h' \text{ s.t. } (h, h') \in \mathcal{H} \}.
\]

Definition 1. A strategy profile \(s^* \) is an equilibrium if for any history \(h \in \mathcal{H} \) it satisfies the following properties in the subgame \(\Gamma(h) \):

\[
\begin{align*}
\text{(Nash)} & \quad \text{For any } i, \quad w(s^*, h) \succeq_i w(s_i, s^*_{-i}, h) \quad \forall s_i \in S_i, \\
& \text{where } \succeq_i \text{ means either } \succ_i \text{ or } =; \\
\text{(Weak non-domination)} & \quad \text{For any } i, \quad \not\exists s_i \in S_i \text{ s.t.} \\
& \quad w(s_i, s_{-i}, h) \succeq_i w(s_i^*, s_{-i}, h) \quad \forall s_{-i} \in \tilde{S}_{-i}(h, s^*) \\
& \quad \text{and} \quad w(s_i, s_{-i}, h) \succ_i w(s_i^*, s_{-i}, h) \quad \forall s_{-i} \in \tilde{S}_{-i}(h, s^*). \tag{1}
\end{align*}
\]

Notice that for any \(s \in S \), at any \(h \in \mathcal{H} \) we can define a one-shot reduced form voting game \(\hat{\Gamma}(h, s) \) in which voter \(i \)'s strategy set is \(A_i(C(h), j) \) and, given any profile \(a^j \in A(C(h), j) = \prod_i A_i(C(h), j) \) of votes, the outcome of the game is given by \(w(s, (h, a^j)) \) being elected. Clearly, our definition of equilibrium strategy in Definition 1 is equivalent to showing that the choices that the equilibrium strategies prescribe at any history \(h \) constitute an undominated Nash equilibrium of the one-shot reduced voting game at \(h \). Thus, \(s^* \) is an equilibrium if and only if \(s^*(h) \) is an undominated Nash equilibrium of \(\hat{\Gamma}(h, s^*) \), for all \(h \).

Remark 1. Our equilibrium concept is effectively a backward elimination procedure. However, note that it differs from the more familiar procedure of iterative
elimination of (weakly) dominated strategies; while in the latter approach the weak-
domination check is carried out in relation to the entire game, ours is only along the
subgames.5,6 Iterative elimination on its own is unlikely to solve the coordination
problem that results in undesirable outcomes.

Remark 2. Note also that any trembling-hand perfect equilibrium in extensive
form satisfies our definition of equilibrium. This is because any trembling-hand per-
fected equilibrium in extensive form is a subgame perfect equilibrium and excludes
weakly dominated choices at different information sets. We could have alternatively
started with trembling-hand perfect equilibrium in extensive form as our equilib-
rium concept (see also our remark following Theorem 3). However, for ease of
exposition we adopt the above definition of equilibrium.

Remark 3. For single-round voting the standard equilibrium concept is undom-
inated Nash. Our twin requirements of subgame perfection and non-domination
reduce to this standard equilibrium definition for single-round voting rules.

Next we define Markov equilibrium.

Definition 2. An equilibrium s^* is said to be Markov if for any i and any j, $s^*_i(h) = s^*_i(h') \ \forall h, h' \in H^j$ such that $C(h) = C(h')$.

Markov equilibrium strategies are such that at any stage onwards the strategies
depend only on the candidates who have survived up to that stage and not on the
specific history leading up to it.

3 Multi-stage, sequential elimination voting

3.1 Condorcet consistency of the weakest link

Much of our insight about multi-stage, sequential elimination voting can be gained
by studying the weakest link voting, so we start with this particular voting rule and
then broaden our analysis to a very general class of sequential elimination voting.

5Moulin [16] formally analyzed the iterative elimination procedure and applied it to a significant
class of voting – voting by veto, kingmaker and voting by binary choices.

6In our setup the two definitions may differ because at each stage our voters vote simultaneously
(the game is not one of perfect information) over more than two alternatives.
First, some notation. Given the voters’ strict preference ordering over candidates, a binary comparison operator T defines a candidate x to be majority-preferred over another candidate y, written as xTy, if the number of voters preferring x over y exceeds the number of voters preferring y over x.\footnote{To relax the assumption of odd number of voters, extend the definition of majority preference, whenever there is a tie, by applying a tie-breaker.}

Next, the CW, if it exists, is defined as a candidate $z \in \mathcal{K}$ such that zTz', for all $z' \in \mathcal{K}$. Similarly, for any set of remaining candidates $C \subseteq \mathcal{K}$ the CW with respect to C, if it exists, is a candidate $z \in C$ such that zTz' for all $z' \in C$.

We say that an equilibrium s^* of a voting rule is CC at every subgame if for every $h \in \mathcal{H}$ such that the set of remaining candidates $C(h)$ has a CW, $z(h)$, the equilibrium strategy induces the CW with respect to $C(h)$ in the subgame defined by h (i.e. $w(s^*, h) = z(h)$ if $z(h)$ is defined for h).

Our first result is an equilibrium characterization of the weakest link game:

\textbf{Theorem 1.} Any Markov equilibrium of the weakest link voting is CC at every subgame.

\textbf{Proof.} We demonstrate this by (backward) induction on the number of remaining candidates in any subgame. First, consider any subgame at stage $k-1$ with only two candidates, z and z'. Because sincere voting is the only Nash equilibrium that is also undominated in this final stage subgame, the CW must be the winner.

Now suppose the following induction hypothesis is true: For every history $h \in \mathcal{H}$ such that the set of remaining candidates $C(h)$ consists of j candidates, the following holds: if $C(h)$ has a CW, z, then z will become the ultimate winner in the subgame defined by h (i.e., $w(s^*, h) = z$). We then prove that the same holds at any history/subgame with $j+1$ remaining candidates.

Suppose not; then there exists a subgame defined by some history \tilde{h} such that the set of the remaining candidates $C(\tilde{h})$ has $j+1$ candidates, $C(\tilde{h})$ has a CW, z, and some other candidate $z' \neq z$ becomes the ultimate winner in this subgame. Now since z is the CW with respect to $C(\tilde{h})$, it follows by the induction hypothesis that z is eliminated immediately at \tilde{h} at stage $k-j$ (since at \tilde{h} there are $j+1$ candidates, the subgame defined by \tilde{h} begins in round $k-j$). Otherwise, since z is also the CW with respect to the set of candidates in the next round, by the hypothesis z will become the ultimate winner.
Next, consider those voters who prefer \(z \) over \(z' \) and their immediate vote at \(\hat{h} \) in stage \(k - j \). By definition of \(z \), these voters will form a majority. Therefore, it must be that at least one such voter, say voter \(i \), who voted for some candidate \(z'' \) other than \(z \). But then we establish a contradiction by showing that for \(i \) voting for \(z \) weakly dominates voting for \(z'' \) at this stage, given the equilibrium continuation strategies in the future stages.

To show this, first notice that if voter \(i \) chooses \(z'' \) there are two possible outcomes depending on the choices of others at this stage: either (i) \(z \) survives at this stage and, by the induction hypothesis, all the subsequent stages and becomes the ultimate winner; or (ii) \(z \) is eliminated and, by the Markov property of the equilibrium strategies, \(z' \) becomes the ultimate winner. Now if (i) is the case then if \(i \) switches his vote from \(z'' \) to \(z \) the outcome will be the same with \(z \) surviving all stages and becoming the winner. If (ii) is the case then if \(i \) switches his vote from \(z'' \) to \(z \), either \(z \) is eliminated and the outcome will be the same with \(z' \) becoming the ultimate winner or \(z \) survives this stage, and by the induction hypothesis, all the subsequent stages and becomes the ultimate winner.

Finally, we need to show that there is a vote profile for all voters other than \(i \) such that if voter \(i \) votes for \(z'' \) then \(z \) would be eliminated and \(z' \) goes on to win whereas if he votes for \(z \) then \(z \) is not eliminated and \(z \) wins. To show this let \(\mathcal{Z} \subset C(\hat{h}) \) be the set of remaining candidates other than \(z'' \) that are lower in the tie-breaker than \(z \) and let \(m \) be the cardinality of this set. Then, since voting at \(\hat{h} \) eliminated candidate \(z \), it must be that \(n - 1 \geq m \). Otherwise, it must be that some \(x \in \mathcal{Z} \) receives zero vote at \(\hat{h} \) and therefore is eliminated (contradiction). Now consider a vote profile for all voters other than \(i \) such that every \(x \in \mathcal{Z} \) receives at least one vote and no other candidate receive any vote; since \(n - 1 \geq m \), this is feasible. Now, if \(i \) votes for \(z \), he is not eliminated (\(z'' \) receives zero vote). On the other hand, if \(i \) votes for \(z'' \), candidate \(z \) is eliminated; this is because in this case \(z \) receives zero vote and any other candidate(s) with zero vote belong to the set \(C(\hat{h})\setminus\{\mathcal{Z} \cup z''\} \) and hence must be higher up in the tie-breaker than \(z \) in the case of a tie. This completes the claim that \(z \) weakly dominates \(z'' \) for \(i \), contradicting the supposition that \(z \) is eliminated at this stage.

Since we already proved our hypothesis for subgames with two candidates, it follows by the induction step above that if there is a \(CW \) for the set \(C \), he will be elected in any subgame with \(C \). Q.E.D.
The above result is a characterization result for Markov equilibria of the weakest link voting when the set of (remaining) candidates has a CW. However, in order to ensure that the result is not vacuous one has to show that the weakest link game has a (Markov) equilibrium. This is particularly important because even if a set of candidates has a CW, there could be subgames off-the-equilibrium path without a CW among the remaining candidates and it is by no means clear that there is an equilibrium in such subgames. Thus, Theorem 1 should be viewed in combination with Theorem 2 below.\(^8\)

Theorem 2. Assume \(n \geq 2k - 1\). Then in the weakest link game there exists a Markov equilibrium.

The proof of this result can be found in supplementary materials. There are several further points to note concerning the characterization result in Theorem 1. First, notice that the arguments in the proof does not make any reference to the tie-breaking rule; thus the weakest link voting is CC for any arbitrary deterministic tie-breaking rule. Also, if the preferences of the voters can be represented using expected utility framework then by an analogous argument one can show that Theorem 1 holds for random tie-breaking rules.

Second, limiting the result to equilibria that are Markov could be considered a limitation of Theorem 1. However, there are two points that we like to make with respect to the Markov restriction. First, a weaker version of the Markov property would suffice for the proof of Theorem 1. All we require to obtain the result is that the equilibrium strategies do not depend on the history through the specific configuration of votes that lead to the particular candidates’ eliminations. However, the strategies can still depend on the order in which the candidates are eliminated. In fact, if we assume that the votes are not revealed between stages but only the identity of the eliminated candidate at each stage is announced, then we do not need the Markov property. Second, it could be shown that if, in choosing the strategies, players have, at least at the margin (lexicographically), a preference for simplicity

\(^{8}\)Since we wrote an earlier version of this paper (available under a different title: Bag et al. [1]), we came across Peress [19] who also examines the issue of Condorcet consistency using the weakest link (that he calls multistage runoff) but under a very restrictive assumption that every subset of candidates has a CW (all candidates can be majority ranked). In particular, he does not need to consider the possibility that off-equilibrium subgames may not have a CW. This makes the required analysis in Peress [19] much simpler.
(aversion to complexity) then all equilibria are Markov.\footnote{Properties of Markov equilibrium in general dynamic games have been studied by Chatterjee and Sabourian [6], Sabourian [20], and Gale and Sabourian [13].} The basic reason is that in our multi-stage voting games at each round some candidate is eliminated, and therefore for any equilibrium strategy profile every set of remaining candidates occur on the equilibrium path at most once. If any player i’s strategy is non-Markov, then i makes a different choice at two different subgames with the same set of remaining candidates C; but then since C occurs at most once on the equilibrium path, player i could economize on complexity by always making the same choice at every subgame with C without sacrificing payoffs. In supplementary materials, we provide a formal justification for this claim for any voting game such that at least one candidate is eliminated in each voting round.

Finally, as discussed after the equilibrium definition, since every trembling hand perfect equilibrium in extensive form satisfies our equilibrium concept, it follows that every Markov trembling hand perfect equilibrium in extensive form of the weakest link voting is CC at every subgame.

3.2 Sequential elimination voting and top cycle consistency

Next we extend our analysis in two ways: (1) consider general sequential elimination voting games; (2) allow arbitrary voter preferences that do not necessarily admit a CW. For the latter, we consider the broader concept of ‘top cycle,’ which always exists and is same as the CW when the CW exists.

Arbitrary voter preferences including no CW

Fix any set of candidates $C \subseteq K$. Then candidate $x \in C$ is said to be directly or indirectly majority preferred to candidate $y \in C$, denoted by x^Cy, if either xTy or there exists a sequence of candidates $x^1, \ldots, x^r \in C$ such that $xT x^1 T \ldots T x^r T y$, where, as before, T is the binary operator representing majority preference. Then the top cycle with respect to C is defined as $\mathcal{TC}(C) = \{x \in C : \forall y \in C, y \neq x, x^C y\}$. We also refer to $\mathcal{TC}(K)$ simply by the top cycle.

Sequential elimination voting with majority property

A general sequential elimination voting is one where in each round only one candidate is eliminated. In these games, as mentioned before, players vote in $k - 1$ rounds, the set of votes for voter i at round $j < k$ when C is the set of remaining
candidates is $A_i(C, j)$, and one candidate $e(a^j, C)$ is eliminated at each round j
with votes a^j.

An important aspect of this procedure would be the decisive role that any group
of majority voters can play: at any round a majority of voters can ensure that any
particular candidate is not eliminated. We now specify this important property for
the set of sequential elimination voting games as follows.

Majority non-elimination (MNE) property: For any stage $j < k$, any set of
remaining candidates C, any $c \in C$, and any set of majority voters $\phi \subseteq N$, there
exists a set of strategy profiles $D^c_\phi(C, j) \subseteq \Pi_{i \in \phi} A_i(C, j)$ for the majority ϕ such that
the following two conditions hold:

[i] (*Majority protection*) If all members of ϕ choose some profile $a_\phi \in
D^c_\phi(C, j)$ then c is not eliminated, i.e.,

$$e(a_\phi, a_{-\phi}, C) \neq c, \forall a_{-\phi} \in \Pi_{i \not\in \phi} A_i(C, j).$$

[ii] (*Protection stability*) For any profile $a_\phi \notin D^c_\phi(C, j)$ such that $e(a_\phi, a_{-\phi}, C) =
c$ for some $a_{-\phi} \in \Pi_{i \not\in \phi} A_i(C, j)$, there exists some member of the majority $i \in \phi$ and
an action $a_i^c \in A_i(C, j)$ such that

$$\forall a'_{-i} \in A_{-i}(C, j) \text{ if } e(a_i, a'_{-i}, C) \neq c \text{ then } e(a_i^c, a'_{-i}, C) \neq c$$

(2)

and

$$\exists a'_{-i} \in A_{-i}(C, j) \text{ s.t. } e(a_i, a'_{-i}, C) = c \text{ and } e(a_i^c, a'_{-i}, C) \neq c.$$ (3)

That is, a_i is “inferior” to a_i^c in protecting c.

All sequential elimination voting rules satisfying [i] and [ii] above constitute the
family F. \| |

Note that $\{D^c_\phi(C, j)\}$ are sets of actions/votes for non-elimination of any
candidate c. For instance, if each stage of the sequential elimination voting involves
voters ranking the candidates, one can think of $\{D^c_\phi(C, j)\}$ as all actions by the
majority that place c at the top of their ranking; then the two conditions in the
MNE-property require that [i] if a majority of voters place c at the top then c
cannot be eliminated, and [ii] if a majority fails to place c at the top and c is elimi-
nated then there is some voter from that majority who will have an action that is
(weakly) better than his particular action in the ‘failed majority action profile’ in
protecting c. Later we will verify that the MNE-property is a fairly mild condition
and **multi-stage, sequential elimination extensions** of a very large class of
one-shot voting rules fall under the family F.

12
Theorem 3. Fix any sequential elimination voting rule in the family \mathcal{F}. In all Markov equilibria, candidate w is the winner in any subgame with remaining candidates C only if $w \in TC(C)$. Hence, all Markov equilibria are CC in every subgame.

The proof appears in the Appendix. Before discussing the scope of the family \mathcal{F}, there are several points to note. First, the top cycle result in Theorem 3 does not require strategies to be Nash as part of the equilibrium definition; we impose the Nash requirement mainly to make the equilibrium definition consistent with the voting games of section 4 and a related negative result in Theorem 4. Second, as in Theorem 1, any Markov trembling hand perfect equilibrium in extensive form will be in the top cycle and is CC when a CW exists. Third, the previous justifications for the Markov restriction in the weakest link game extend to this setup as well (see the supplementary material).

The scope of \mathcal{F}

To fully appreciate Theorem 3, it is important that we elaborate the scope of the voting family \mathcal{F}. First consider scoring rules.

Definition 3. (Scoring voting rules (Moulin [18], ch. 9)) Fix a nondecreasing sequence of real numbers $\sigma_1 \leq \sigma_2 \leq \cdots \leq \sigma_k$ with $\sigma_1 < \sigma_k$. Voters rank the candidates, giving σ_1 score to the one ranked last, σ_2 to the one ranked next to last, and so on. A candidate with a maximal total score is elected.

Definition 4. (Sequential elimination scoring rule) A sequential elimination scoring rule is the multi-stage, sequential elimination analogue of scoring rules: At any stage and for any set of remaining $J \leq k$ candidates, fix a non-decreasing sequence of real numbers $\sigma_1 \leq \sigma_2 \leq \cdots \leq \sigma_J$ (with $\sigma_1 < \sigma_J$) to correspond to J ranks. Each voter ranks the candidates at the particular stage, thus assigning each candidate a score and the candidate receiving the lowest total score is eliminated at that stage.

Proposition 1. Any sequential elimination scoring rule belongs to the family \mathcal{F}, if at each stage the scores associated with different ranks are such that

$$\frac{1}{2} (\sigma_1 + \sigma_J) \geq \frac{1}{(J-2)} \sum_{j=2}^{J-1} \sigma_j. \quad (4)$$

Condition (4) implies that if any majority voters place a candidate c at the top and the remaining voters place c at the bottom then the resulting total score
of c can never be the lowest (exceeds the average score of the other candidates). Therefore, this condition ensures that c is not eliminated, irrespective of what others do, and thus the set of actions by a majority that place a candidate at the top satisfies majority protection and hence the MNE-property (protection stability is also satisfied by any strategy that does not place c at the top because it is then always possible to protect c better by improving its ranking). In fact, the MNE-property cannot be guaranteed in sequential elimination scoring if condition (4) fails.

Both plurality and Borda rules satisfy (4), so the corresponding sequential elimination extensions of these two rules satisfy the MNE-property. However, the negative voting with $\zeta_1 = 0$ and $\zeta_j = 1$ for all $j > 1$ would fail (4). Moreover, one can show that its sequential elimination extension (in each stage each voter vetoes one candidate and the one receiving the maximum number of vetoes is eliminated) fails the MNE-property. This is because a majority of voters may not always be able to guarantee non-elimination of a candidate c by giving it the maximum point, 1. The only way to ensure non-elimination of c is for the majority to coordinate to veto some other candidate(s) other than c; but this may violate protection stability because strategies that do not coordinate on vetoing some other candidate(s) need not be inferior in protecting the particular c.

There are some other one-shot voting rules – approval voting, Copeland rule and Simpson rule – that are not part of scoring rules even though each candidate receives a score. These have similar sequential elimination extensions (at any round the candidate receiving the lowest score is eliminated, applying a tie-breaker whenever necessary). The next result demonstrates that these sequential elimination extensions also satisfy the MNE-property, and hence are top cycle consistent.

Proposition 2. The sequential elimination extensions of approval, Copeland and Simpson voting rules belong to the family \mathcal{F}.

The proof of Proposition 1 appears in the Appendix. Proposition 2 proof is very similar and omitted (see also footnote 14).

Note that since our multi-stage voting is quite general – voters can submit a weak or strict ranking, or the preference submission may even be more abstract than a simple ranking of candidates – the scope of the family \mathcal{F} goes well beyond sequential elimination extensions of one-shot voting games that are generally based on a ranking of all remaining candidates at every stage. For example, sequential
binary voting also eliminates candidates one-by-one, even though at each stage the set of actions/votes is restricted to consist of only two candidates. Furthermore, this class trivially satisfies the MNE-property. Hence, this important class also comes under \(\mathcal{F} \).

3.3 Family \(\mathcal{F} \), binary voting and a generalization

McKelvey and Niemi [15] also obtain the top cycle result for general binary voting that satisfy a monotonicity property – a very mild requirement met, for instance, using majority rule. Our multi-stage, sequential elimination voting family is inherently different: in contrast to the binary voting games of McKelvey and Niemi, sequential elimination voting does not restrict the choices at each round to only two; binary voting, on the other hand, does not necessarily assume sequential elimination property (binary voting may involve no candidate or multiple candidates being eliminated in a single stage, including selecting a winner even in the first stage). The exception is the sequential binary voting which belongs to both setups (it satisfies sequential elimination and the choices at each round are binary).

In comparing our results with the earlier results on binary voting, there are several further points worth noting. First, to establish their top cycle result, McKelvey and Niemi define an equilibrium concept that involves solving uniquely the various constituent stage games backwards using elimination of weakly dominated strategies. This concept is well-defined in binary voting games in which every decision node involves two choices; as a result working backwards each voter has a unique dominant choice at each stage and the game can be solved uniquely at each stage. In our multi-stage voting framework with more than two remaining candidates voters usually have more than two choices, making the backwards induction type reasoning used in McKelvey and Niemi problematic because there is not necessarily a unique dominant choice and hence a unique continuation path.\(^{10}\) To deal

\(^{10}\) In binary voting, at the final decision nodes with only two choices (and each choice corresponds to a single candidate), sincere voting is the unique dominant choice and thus one can associate each final decision node with its “sophisticated equivalent” (Shepsle and Weingast [21]) – the candidate that wins conditional on reaching that particular subgame; iterating back up the tree, by the same reasoning, voters again have two choices over two sophisticated equivalents and voting sincerely over these choices is dominant. In our multi-stage voting scheme, working backwards and iteratively deleting dominated strategies does not typically yield a unique choice at each stage because the choice is not necessarily between two alternatives (sophisticated equivalents). In the
with the non-uniqueness problem, our equilibrium concept solves recursively the
different stages backwards by taking at each stage the continuation strategies as
given and assuming Markov property. Second, as a procedure the binary nature of
choices is clearly very restrictive and makes the outcome of the binary voting game
critically dependent on the exogenous order of choices. On the other hand, sequential
elimination voting are not necessarily dependent on some exogenous ordering
of candidates (or sets of candidates) with respect to which the voters must vote;
rather, all remaining candidates can be simultaneously considered by the voters
as voting moves from one round to another. Furthermore, sequential elimination
voting extends the scope of decision making in obvious ways (allowing multi-stage,
sequential elimination extensions of well-known one-shot voting rules). Third, our
result together with the earlier literature establish that the top cycle result (and
hence Condorcet consistency) follows from sequential elimination or from restrict-
ing choices to only two at every stage. It turns out that we can easily generalize
our multi-stage voting games to also include binary voting as a special case and
preserve the top cycle property.

Generalization: Consider the following three specific changes to the voting game
in Section 2: (i) voting occurs in J stages, with J finite but not necessarily less than
k (the number of candidates); (ii) at any stage $j \leq J$, the choice of a voter i is an
element from an arbitrary choice set $A_i(h^j)$, rather than $A_i(C, j)$ (i.e., history may
matter); and (iii) at any stage j with an action profile a^j, there is no restriction on
the cardinality $|e(a^j, h^j)|$, i.e., the number of candidates eliminated in any round
can be anything between zero and $|C| - 1$.

Next, consider an extended voting game with the above modifications such
that at every stage, either (i) $|A_i(h)| = 2$ as in binary voting and the voting rule
satisfies the monotonicity of McKelvey and Niemi [15], or (ii) exactly one candidate
is eliminated according to a rule that satisfies the MNE-property as in sequential

11 The Markov restriction ensures that the equilibrium choices at each stage do not depend on
payoff-irrelevant past history. McKelvey and Niemi do not require this restriction because in their
setup, by the binary nature of choices at every decision node, the equilibrium in any continuation
game is unique and hence is history-independent.
elimination voting. (Thus, in principle, it is possible that in some of the stages binary voting rule is in play while in other stages one-candidate elimination rule of ours applies.) Now applying our equilibrium solution to this extended voting game, it can be shown by a similar argument as in the proof of Theorem 3 that the outcome always belongs to the top cycle.

4 Necessity of repeated ballots and sequential elimination

In this section we look at non-binary voting rules that differ from the family \mathcal{F} in two important respects: either (1) the elimination of candidates is not sequential, or (2) the elimination which may even be sequential is through a single ballot, or both. This complementary class includes all single-round voting, a plurality runoff rule, the exhaustive ballot method, instant runoff voting, etc. We shall examine the Condorcet consistency property (or the lack of it) of this complementary class.

First define a general class of single-round voting rules. For any set of candidates \mathcal{K} with cardinality k, the set of strategies for a voter is to rank the k candidates in J different categories for some J such that $1 < J \leq k$ subject to some bounds on the number of candidates in each category. Denote the minimum and the maximum number of candidates in each category $j \leq J$ by $m(j)$ and $M(j)$, respectively. Let Λ be the set of all such J rankings over \mathcal{K}. Thus, the strategy for voter i, denoted by $R_i \in \Lambda$, is a profile (X_1, \ldots, X_J) with J components such that it partitions the set \mathcal{K} into J non-empty cells X_1, \ldots, X_J and $m(j) \leq |X_j| \leq M(j)$. Since it is a partition, it must be the case that $\sum_j m(j) \leq k$. From R_i we can also specify for each $x, y \in \mathcal{K}$ whether x is ranked strictly above y, denoted by $x P_i y$, or y is ranked strictly above x, denoted by $y P_i x$, or x is ranked the same as y (in the same category), denoted by $x I_i y$. For any set of n voters, the one-shot voting game also specifies the winning candidate as a function of the submitted strategies of the n voters given by an outcome function $f^n : \Lambda^n \rightarrow \mathcal{K}$. A voting rule with k candidates is then defined by the number of categories, the bounds on the size of each category and the outcome function. We refer to such a one-shot voting rule by $v(k) = (J, \{m(j)\}_{j \leq J}, \{M(j)\}_{j \leq J}, \{f^n\}_{n \in \mathbb{N}})$, where \mathbb{N} is the set of odd numbers (as elsewhere, this restriction is made for simplicity).

Rankings Λ can accommodate all scoring voting rules as well as many others.
that do not fall under scoring rules category (e.g. approval voting, Copeland and Simpson rules). Thus, our one-shot voting game is the most comprehensive (one-shot) generalization of scoring rules.

We shall see that, for any fixed number of candidates \(k \), all single-round voting games satisfying two intuitive properties, called scale invariance and responsiveness, are not CC in strategic voting. This will be a strong assertion because (i) all standard one-shot voting rules satisfy these two properties and (ii) the lack of Condorcet consistency is demonstrated for any arbitrary \(k \). (The number of voters can of course vary.) The meaning of scale invariance is rather straightforward.

Definition 5. A voting rule \(v(k) \), for any \(k \), is ‘scale invariant’ if replicating the set of voters with their submitted strategies by any multiple will not alter the winner.

Before defining responsiveness, we need to define sincere behavior and Condorcet consistency (in sincere voting) in the above class of voting games. We say that a strategy \(R_i = (X_1, \ldots, X_J) \in \Lambda \) submitted by voter \(i \) is sincere if \(X_1 = \{c^1, \ldots, c^{m(1)}\} \), \(X_2 = \{c^{m(1)+1}, \ldots, c^{m(1)+m(2)}\}, \ldots, X_J = \{c^{\sum_{j<k} m(j)+1}, \ldots, c^k\} \), when the true preference ranking of voter \(i \) is \(c^1 \succeq_i \cdots \succeq_i c^k \). Then for any \(k \), a voting rule \(v(k) \) is said to be CC under sincere voting if for any number of voters and any preference profile over \(k \) candidates that admits a CW, the voting rule \(v(k) \) selects the CW whenever the voters’ strategies are sincere.

Responsiveness is about voter pivotalness. Roughly, it requires that for each voter, there is a scenario at which the voter is pivotal in determining the winner between any two candidates.

Definition 6. A voting rule \(v(k) \), for any \(k \), is ‘responsive’ if it satisfies the following two conditions for each voter \(i \):

1. For any pair of candidates \(x \) and \(y \) and any two strategies \(R_i \) and \(R'_i \) such that \(x P_i y \) and \(y P'_i x \) there exists a profile of strategies \(R_{-i} \) by the remaining voters such that \((R_i, R_{-i})\) elects \(x \) as the winner, and \((R'_i, R_{-i})\) elects \(y \) as the winner.

2. If the voting rule is CC under sincere voting then (i) the submissions are strict \((J = k)\) and (ii) for any three candidates \(X = \{x, y, z\} \), there exists a

\[^{12}\text{This definition is a generalization of the standard definition of sincere behavior when } J = k.\]

\[^{13}\text{The only two one-shot voting rules known to be CC under sincere voting (Copeland and Simpson; see Moulin [18]) are based on strict rankings.}\]
candidate z in X such that the following holds: for any pair of strategies $R_i = (X_1, X_2, X_3, \ldots, X_k)$ and $R_i' = (X_2, X_1, X_3, \ldots, X_k)$ such that $X_1 = x$, $X_2 = y$ and $X_3 = z$, there exists a profile of strategies R_{-i} by the remaining voters such that (R_i, R_{-i}) elects x as the winner, and (R_i', R_{-i}) elects z as the winner.

Theorem 4. Fix any k. For any single-round voting rule $v(k)$, if $v(k)$ satisfies responsiveness and scale invariance then $v(k)$ is not CC.

Proposition 3. Suppose $n \geq k-1$. Then all scoring rules (including plurality rule, negative voting, Borda rule), approval voting, the two variants of Instant runoff voting (with and without the majority top-rank trigger), Copeland rule and Simpson rule will all satisfy responsiveness and scale invariance conditions of Theorem 4. Hence none of these one-shot voting rules will be CC.

For the proof of Theorem 4 see the Appendix. The proof of Proposition 3 appears in supplementary materials. Notice that the voting rules in Proposition 3, other than Copeland and Simpson, are not CC under sincere voting; therefore, condition 2 of Definition 6 is trivially satisfied for these other rules.

While failure of Condorcet consistency for specific one-shot voting rule(s) is not that surprising (see [9] and [7]), to our knowledge there is nothing to suggest that Condorcet consistency (under strategic voting) should fail for the entire class of one-shot voting. On the contrary, significant positive results in the implementation literature would have led one to believe otherwise. In this respect, failure of Condorcet consistency for the family of one-shot voting rules for any arbitrary number of candidates is an important result.\(^\text{i}\)

So far in this section we have considered only single-round voting rules that rank candidates. Next we consider (non-binary) voting rules that do not belong to either the above class of single-round voting or the sequential elimination voting family of section 3. Obviously one can think of many voting rules that come under a third complementary group. We are not going to make any general observation here. Instead, we present some voting rules to indicate why both sequential elimination and repeated ballots are important for Condorcet consistency.

\(^{14}\)Note that the Condorcet map is Maskin monotonic ([14]) on the restricted domain of preferences where CW exists (and will be Maskin monotonic even in unrestricted domains if one defines social choice rule to select all outcomes when CW fails to exist). Since the Condorcet map also satisfies ‘no veto power,’ it is Nash implementable if one considers arbitrary, rather than just one-shot voting, mechanisms.
Proposition 4. The plurality runoff rule, the exhaustive ballot method, and the one-shot weakest link voting (with voters submitting their entire weakest link strategies once-for-all in a single round followed by sequential elimination) are not CC.

The proof, based on counter-examples, appears in supplementary materials. Note that the plurality runoff rule and the exhaustive ballot method, used in various political appointments, share features of weakest link voting in that both use multiple ballots but fail sequential elimination. On the other hand, the one-shot version of the weakest link voting eliminates candidates sequentially but fails repeated ballots (and likewise for the instant runoff voting without the majority top-rank trigger, noted in Proposition 3).

In contrast to the results in Theorem 4 and Propositions 3 and 4, repeated ballots and sequential elimination allow the voters to coordinate their votes and ensure that the CW is never eliminated. This ability of the voters to coordinate derives from both sequential elimination as well as the power of the equilibrium refinement (based on backward inductions) associated with the dynamic (repeated) structure of the game. An intuition on why elimination of more than one candidate in some round may lead to a non-Condorcet outcome would be instructive. The basic idea is that with sequential elimination, when the CW is eliminated in some voting round the (off-equilibrium) outcome is unique in the induction argument. When more than one candidate are eliminated, following the CW’s elimination the outcome is not necessarily unique – it depends on who else is being eliminated along with the CW; as a result, in this case, the voters may not vote for the CW in order to influence the final outcome in the case when the CW is eliminated.

Furthermore, the necessity of multi-stage mechanisms can be understood from the failure of Condorcet consistency in the one-shot version of the weakest link voting game (Proposition 4). This latter rule requires the voters to submit their entire weakest link strategies in one single round and thus only the weak non-domination refinement of Nash is applicable, without the power of backward inductions of multi-stage voting. As is well known, weak non-domination of strategies has little bite in tackling vote coordination problem except when only two candidates remain. With only one-shot submission of the weakest link strategies, the presence of more than two candidates makes potentially wrongful vote coordination problem resurface.

The miscoordination problem (in terms of the lack of Condorcet consistency) we have identified above in most standard voting models can be worse when there is
no CW, as these voting rules, in contrast to the family \mathcal{F} (see Theorem 3), may not even select a member of the top cycle. We shall next provide an intuition for such possibilities by providing examples of winning candidate outside the top cycle set in the context of plurality rule and plurality runoff voting (plurality and plurality runoff are respectively typical examples of one-shot voting and multi-round voting without sequential elimination).

Consider the case of five voters and six alternatives with the following preferences: type 1: a, b, c, d, e, f (two voters); type 2: b, c, a, e, d, f (two voters); type 3: c, a, b, d, e, f (one voter). Assume further that the tie-breaker is such that e is eliminated last and d second last. Clearly, d is outside the top cycle. In the case of plurality rule, voting for d by each voter is an equilibrium outcome (that is, Nash and undominated) because d is not lowest in any one’s ranking. In the case of the plurality runoff it can be checked that the following strategies will be an equilibrium: in the second stage voters vote sincerely; in the first stage two type 1 voters vote for d, two type 2 voters vote for e, and the type 3 voter votes for d. Thus, in both voting rules, the alternative d will be the winner in an equilibrium.

Appendix

Proof of Theorem 3. We use induction on the number of remaining candidates. Assume the following induction hypothesis: *Theorem 3 is true for any subgame with j candidates.*

We want to show that the result is also true for any subgame with $j + 1$ remaining candidates. Suppose not. Then there is a subgame Γ at stage $k - j$ with remaining candidates C of cardinality $j + 1$ such that w is the ultimate winner and $w \notin TC(C)$. This implies there exists some $y \in C$ such that

$$\text{it is not the case that } w \text{ } TC y.$$ \hfill (5)

Next we establish two intermediate claims.

Claim 1: y must be the first eliminated candidate in the subgame Γ.

If not, let $y' \neq y$ be the candidate eliminated at this stage. Then in this subgame the remaining candidate set is $C \setminus y'$ and w wins, which implies by the induction hypothesis $w \in TC(C \setminus y')$. But then $w \text{ } TC \setminus y' y$, contradicting (5).

Claim 2: For any $a \in C$ with $a \neq y$, y is the winner in any subgame with remaining candidates $C \setminus a$.

21
Suppose not: there is $a \in C$, $a \neq y$ and a subgame with remaining candidates $C \setminus a$ such that the winner is \hat{w} and $\hat{w} \neq y$. Then by the induction hypothesis $\hat{w} \in TC(C \setminus a)$. But this, together with $y \in C \setminus a$ and (5), imply that $\hat{w} \not\in TC(C \setminus a)$ and $\hat{w} \neq w$. Also, by Claim 1 and the induction hypothesis $w \in TC(C \setminus y)$; this together with $\hat{w} \neq y$ and $\hat{w} \neq w$, imply that $w \not\in TC(C \setminus a)$. Since $\hat{w} \not\in TC(C \setminus a)$, we must then have $w \not\in TC(C \setminus y)$, contradicting (5). So Claim 2 must be true.

Now in the subgame Γ with remaining candidates C, consider any voter i such that $y \succ_i w$; there will be a majority of such voters because $y \not\in TC(C \setminus y)$. Denote these majority voters by Φ. By condition [1] of the MNE-property, there exists a set $D_{\Phi}(C, k - j) \subseteq A_\Phi(C, k - j)$ such that for any $a_\Phi \in D_{\Phi}(C, k - j)$, such that $e(a_\Phi, a_{-\Phi}, C) \neq y$, $\forall a_{-\Phi} \in \Pi_{i \not\in \Phi} A_i(C, k - j)$. Then since by Claim 1 y must be the first eliminated candidate in the subgame Γ, it must be that the majority Φ chose some vote profile $\hat{a}_\Phi \not\in D_{\Phi}(C, k - j)$. By condition [2] of the MNE-property, this implies that there is some voter $i \in \Phi$ whose vote choice \hat{a}_i (corresponding to the profile \hat{a}_Φ) is “inferior” to some other vote choice a_i^y (as defined in condition [ii] of the MNE-property in section 3.2) in protecting y. But then we establish a contradiction by showing that for i voting for a_i^y weakly dominates voting for \hat{a}_i at this stage $k - j$, given the equilibrium continuation strategies in the future stages.

To show this, first note that if i votes for \hat{a}_i, there are two possible outcomes depending on the choices of others at this stage: [1] y survives and becomes the ultimate winner, by Claim 2; [2] y is immediately eliminated in which case by Claim 1 and the Markov property of the equilibrium strategies, w becomes the ultimate winner. Now if [1] is the case and i switches his vote from \hat{a}_i to a_i^y then y would still survive this stage (by (2) in condition [ii] of the MNE-property) and, by Claim 2, become the ultimate winner. If [2] is the case and i switches from \hat{a}_i to a_i^y then either y is immediately eliminated that ensures, by Claim 1 and the Markov property of the equilibrium strategies, that w is the winner, or y survives and becomes the ultimate winner (by Claim 2). Finally, by (3) in condition [ii] of the MNE-property, there is some $a_{-i} \in A_{-i}(C, k - j)$ such that $e(\hat{a}_i, a_{-i}, C) = y$ (and w wins by Claim 1 and the Markov property of the equilibrium strategies), and yet $e(a_i^y, a_{-i}, C) \neq y$ that would result in y winning (by Claim 2).

This completes the claim that a_i^y weakly dominates voting for \hat{a}_i, contradicting the supposition that $w \not\in TC(C)$ is the winner.

By a similar argument as above, it is easy to check that the hypothesis is true
for \(j = 2 \), hence by induction Theorem 3 proof is now complete. \(\text{Q.E.D.} \)

Proof of Proposition 1. Fix a stage with the set of remaining candidates \(C \) having the cardinality \(J \). Also, fix a candidate \(c \in C \) and a majority \(\phi \).

For any voter \(i \), let \(D_i^c(C, j) \) be the set of all strategies that place \(c \) at the top (with no other restriction on the positions of other candidates).\(^{15} \) Also, let \(D_i^C(C, j) = \prod_{i \in \phi} D_i^c(C, j) \).

First we verify condition \([i]\). Fix any \(a \in A(C, j) \) such that \(a_\phi \in D_i^C(C, j) \). We need to show that \(e(a, C) \neq c \).

For any \(x \in C \) and any \(a' \in A(C, j) \), denote the total score of candidate \(x \) at this stage when action profile \(a' \) is chosen by \(TS(x, a') \).

Next, define \(\theta_{\text{top}} \) to be the total score of a candidate if he receives the highest score, \(\varsigma_J \), from a majority of \((n + 1)/2 \) voters and gets the lowest score, \(\varsigma_1 \), from the remaining \(n - (n + 1)/2 \) voters:

\[
\theta_{\text{top}} = \frac{(n + 1)}{2} \varsigma_J + \frac{n - (n + 1)}{2} \varsigma_1.
\]

Since \(a \) is such that the majority \(\phi \) place \(c \) at the top, it follows that \(TS(c, a) \geq \theta_{\text{top}} \). Therefore, the average score that the other candidates receive when \(a \) is chosen cannot exceed

\[
\theta_{\text{rest}} = \frac{n[\varsigma_J + \ldots + \varsigma_1] - \theta_{\text{top}}}{J - 1}.
\]

But then there must exist a candidate \(d \in C \) such that \(TS(d, a) \leq \theta_{\text{rest}} \). Now to complete verification of condition \([i]\), it suffices to show that \(\theta_{\text{top}} - \theta_{\text{rest}} > 0 \). Write

\[
(J - 1)(\theta_{\text{top}} - \theta_{\text{rest}}) = J \cdot \theta_{\text{top}} - n \sum_{\ell=1}^{J} \varsigma_\ell
\]

\[
= \frac{(J - 2)n + J}{2} \varsigma_J + \frac{(J - 2)n - J}{2} \varsigma_1 - n \sum_{\ell=2}^{J-1} \varsigma_\ell.
\]

Therefore, \(\theta_{\text{top}} - \theta_{\text{rest}} > 0 \Leftrightarrow \frac{1}{2} (\varsigma_J + \varsigma_1) + \frac{J}{2n(J - 2)} (\varsigma_J - \varsigma_1) > \frac{1}{(J - 2)} \sum_{\ell=2}^{J-1} \varsigma_\ell. \)

\(^{15}\)We omit the proof of Proposition 2. It follows a similar argument as in the proof of Proposition 1. For sequential elimination extension of approval voting, \(D_i^C(C, j) \) will consist of the unique strategy of voter \(i \) approving only candidate \(c \) and disapproving all the remaining candidates. For sequential elimination extensions of Copeland and Simpson rules – given that these rules are based on strict order submissions – \(D_i^e(C, j) \) will place only candidate \(c \) at the top.
Since $\frac{1}{2}(\varsigma_J + \varsigma_1) \geq \frac{1}{(J-2)} \sum_{\ell=2}^{J-1} \varsigma_\ell$ and $\varsigma_J > \varsigma_1$, it follows that $\theta_{\text{top}} - \theta_{\text{rest}} > 0$. ||

Next, we verify condition [ii]. Fix $a \in A(C, j)$ such that $a_{\phi} \not\in D(C, j)$ and $e(a, C) = c$. For any i, let m^i be a candidate to whom i attaches the highest score ς_J: $a_i(m^i) = \varsigma_J$. Also, without loss of generality, denote the set of voters in the ϕ-majority by $\{1, 2, \ldots, |\phi|\}$. Next, consider the sequence of vote profiles, $a_i^{(0)}, a_i^{(1)}, \ldots, a_i^{(|\phi|)}$, defined as follows: $a_i^{(0)} = a$ and

$$a_i^{(i)}(x) = \begin{cases}
\varsigma_J & \text{if } x = c \text{ and } \ell \leq i \\
a_i(c) & \text{if } x = m^\ell \text{ and } \ell \leq i \\
a_i(x) & \text{otherwise,}
\end{cases}$$

for any i and ℓ such that $1 \leq i, \ell \leq |\phi|$. Note that $a_i^{(|\phi|)}$ is such that $a_i^{(|\phi|)}(c) = \varsigma_J$ for all $i \in \phi$. Therefore, $a_i^{(|\phi|)} \in D(C, j)$ and hence, by condition [ii], $e(a_i^{(|\phi|)}, C) \neq c$. Moreover, by assumption $e(a_i^{(0)}, C) = c$. Therefore, there exists some i, $1 \leq i \leq |\phi|$, such that $e(a_i^{(i)}, C) = c$ and $e(a_i^{(0)}, C) \neq c$. Furthermore, by the definition of the sequence $a_i^{(0)}, a_i^{(1)}, \ldots, a_i^{(|\phi|)}$ we have that $a_i^{(i-1)} = a_i$ and $a_i^{(i-1)} = a_i^{(i)}$. Therefore, we have $e(a_i, a_i^{(i-1)}, C) = c$ and $e(a_i^{(0)}, a_i^{(i-1)}, C) \neq c$ verifying (3) in condition [ii].

To verify (2), for $a_i = a_i^{(i-1)}$ and $a_i^{(i)}$ note that $a_i^{(i)}(c) = \varsigma_J$, $a_i^{(i)}(m^i) = a_i(c)$ and $a_i^{(i)}(x) = a_i(x)$ for all $x \neq c$. Thus, for any $a_{-i} \in A_{-i}(C, j)$ we have $TS(c, a_i^{(i)}, a_{-i}) \geq TS(c, a_i^{(i)}, a_{-i})$, $TS(m^i, a_i^{(i)}, a_{-i}) \leq TS(m^i, a_i^{(i)}, a_{-i})$ and $TS(x, a_i^{(i)}, a_{-i}) = TS(x, a_i^{(i)}, a_{-i})$ for all $x \neq c$. But this implies that if $e(a_i, a_{-i}, C) \neq c$ then $e(a_i^{(i)}, a_{-i}, C) \neq c$ for all $a_{-i} \in A_{-i}(C, j)$, hence verifying (2).

Q.E.D.

Proof of Theorem 4. First we show that sincere submission of one’s ranking is never a weakly dominated strategy. Without loss of generality assume that voter i has the preference relation $c^k \succ_i c^{k-1} \succ_i \ldots \succ_i c^0$. Suppose $R_i = (X_1, \ldots, X_J)$ is sincere and R_i is dominated by $R_i' = (X_1', \ldots, X_J')$. Note that for any $\tau \leq J$, $|X_\tau| = m(\tau)$ and $|X'_\tau| \geq m(\tau)$. Let j be the first cell such that $X'_j \neq X_j$. If $|X_j| < |X'_j|$ then for some $r > j$ it must be that $|X_j| > |X'_j|$, but this is not possible. So $|X_j| = |X'_j|$, hence there exist some $x \in X_j$ and $y \in X'_j$ such that $x \in X'_\ell$ for some $\ell > j$ and $y \in X_r$ for some $r > j$. Hence $x P_i y$ and $y P_i x$. But then by condition 1 in Definition 6 there exists R_{-i} such that (R_i, R_{-i}) results in x winning, and (R_i', R_{-i}) results in y winning, thus contradicting that R_i is dominated by R_i'.

Now consider two separate cases.

Case A: The voting rule is not CC with respect to sincere voting.
Consider any specific preference profile \((\succ_1, \ldots, \succ_n)\) and the sincere strategy profile \(R_N \equiv (R_i)_{i \in N}\) for which Condorcet consistency is violated in sincere voting. By the above argument, each \(i\) submitting \(R_i\) is weakly undominated. Replicate this voting game sufficiently large with every voter with preference ordering \(\succ_i\) submitting \(R_i\) (so that the scale invariance of Definition 6 applies) such that unilateral deviation does not alter the non-Condorcet outcome and hence constitute a Nash equilibrium in undominated strategies.

Case B: The voting rule is CC in sincere voting.

Consider the first three candidates \(c^1, c^2\) and \(c^3\). Without any loss of generality assume that \(c^3\) is the candidate among the first three candidates that satisfies the property in condition 2 in Definition 6 (i.e. \(c^3\) is in the role of candidate \(z\) in condition 2). Next, let \(\kappa = \max\{\kappa' \mid 3\kappa' \leq n\}\), where \(n\) is the number of voters. Suppose that the true preference profile of the voters is such that the set of voters can be partitioned into three sets \(S^1, S^2\) and \(S^3\) as follows: The set \(S^1\) consists of \(n - 2\kappa\) voters and each \(i \in S^1\) has preferences given by \(c^1 \succ_i c^2 \succ_i c^3 \succ_i \ldots \succ_i c^k\); the set \(S^2\) consists of \(\kappa\) voters and each \(i \in S^2\) has preferences given by \(c^2 \succ_i c^1 \succ_i c^3 \succ_i \ldots \succ_i c^k\); the set \(S^3\) consists of \(\kappa\) voters and each \(i \in S^3\) has preferences given by \(c^3 \succ_i c^1 \succ_i c^2 \succ_i c^4 \succ_i \ldots \succ_i c^k\). Then note that \(c^1\) is the CW.

Now since the voting rule is CC in sincere voting, by condition 2 in Definition 6, \(J = k\). Next let \(S = S^1 \cup S^2\) and consider for any \(i \in S\) the strategy \(R_i = (c^2, c^1, c^3, \ldots, c^k)\). First we show that for any \(i \in S\), \(R_i\) is not weakly dominated.

Suppose not; then for some \(i \in S\), \(R_i\) is weakly dominated by another strategy \(R_i' = (X'_1, \ldots, X'_k)\). Now since \(R_i\) is sincere if \(i \in S^2\) and voting sincerely is not weakly dominated, it follows that \(i \in S^1\) and \(c^1 \succ_i c^2 \succ_i c^3 \succ_i \ldots \succ_i c^k\). Using this, we next establish in several steps that \(X'_1 = c^\tau\) for all \(\tau \leq k\).

Step 1: We claim that \(X'_1 \neq c^\tau\) for any \(\tau > 2\). Suppose not; then by condition 1 in Definition 6 there exists \(R_{-i}\) such that \(R_i\) results in \(c^2\) winning, and \(R_i'\) results in \(c^\tau\) for some \(\tau > 2\) winning, thus contradicting that \(R_i\) is dominated by \(R_i'\).

Step 2: We claim that \(X'_1 = c^1\). Suppose not; then by the previous step \(X'_1 = c^2\). But since \(R_i = (c^2, c^1, c^3, \ldots, c^k)\) and \(c^1 \succ_i c^2 \succ_i c^3 \succ_i \ldots \succ_i c^k\), it must then be that \(X'_2 = c^\tau\). Otherwise \(X'_2 = c^\tau\) for some \(\tau > 2\), and by condition 1 there exists some \(R_{-i}\) such that \((R_i, R_{-i})\) elects \(c^1\) whereas \((R_i', R_{-i})\) elects \(c^\tau\), contradicting that \(R_i\) is dominated by \(R_i'\). That is, from \(X'_1 = c^2\) follows \(X'_2 = c^1\), and continuing with a similar reasoning using induction yields \(R_i' = R_i\). But this is a contradiction.

Step 3: We claim that for \(X'_j = c^j\) for all \(j \leq J\). Since by the previous step
the claim is true for $j = 1$, by induction, it suffices to show that for any $j \leq J$, if $X_j' = c^j'$ for all $j' < j$, then $X_j' = c^j$. To show this suppose contrary to the claim that $X_j' = c^j'$ for all $j' < j$ and $X_j' \neq c^j$. Then $X_j' = c^\tau$ for some $\tau > j$. This implies, by condition 1 in Definition 6, that there exists R_{-i} such that R_i results in either c^1 (if $j = 2$) or c^j (if $j > 2$) winning, and R_i' results in c^τ. Since i prefers both c^1 and c^j to c^τ ($\tau > j$), this contradicts R_i being dominated by R_i'.

Now since $R_i = (c^2, c^1, c^3, ..., c^8)$ and $R_i' = (c^1, c^2, c^3, ..., c^8)$, by condition 2 in Definition 6, there exists a strategy profile R_{-i} such that (R_i', R_{-i}) elects c^3 whereas (R_i, R_{-i}) elects c^2. Since c^3 is worse than c^2 in i’s true ranking, R_i' cannot weakly dominate R_i. But this is a contradiction. Hence R_i is not weakly dominated.

Now consider the strategy profile R_N in which every $i \in S$ submits the strategy R_i, and the rest of the voters vote sincerely by submitting $(c^3, c^1, c^2, c^4, ..., c^8)$. First, note that by the previous arguments R_N is undominated. Next, we show that such a profile results in c^2 being elected. Consider any preference profile $\succ' = (\succ'_1, ..., \succ'_n)$ such that $c^2 \succ'_i c^1 \succ'_i c^3 \succ'_i c^4 \succ'_i c^5$ for every $i \in S$ and R_i is sincere with respect to \succ'_i for every $i' \in N \setminus S$. Clearly, R_N is sincere with respect to \succ'. Moreover, since \succ' is such that c^2 is the most preferred for every $i \in S$ and the set S constitutes a majority, it follows that c^2 is the CW with respect to \succ'. Hence, since the voting rule is, by assumption, CC in sincere voting and R_N is sincere with respect to \succ', it follows that c^2 must be elected when the voters submit R_N.

Now assume that $n > 5$ and R_N is chosen. Then no individual voter can affect the outcome because for any single deviation there are at least $n - 2\kappa + \kappa - 1 = n - \kappa - 1 \geq 2\kappa - 1$ voters (the numbers of S_1 and S_2 minus 1) who put c^2 first. Since $2\kappa - 1$ forms a majority if $n > 5$ and the voting rule is CC with respect to sincere voting, it follows that c^2 is still elected if any single voter deviates. Thus the strategy profile R_N is a Nash equilibrium with undominated strategies, yielding the candidate c^2. But c^1 is the CW with respect to the true preferences. Q.E.D.

A glossary of voting rules (Moulin [18])

Binary voting: In binary voting (described by a binary tree) there are many rounds of voting and in each round voters vote over only two choices. The voting proceeds by elimination of choices through the voting rounds (often using majority rule) until the voting reaches a final stage at which each choice corresponds to the selection of a candidate. A special case of binary voting is the **sequential binary voting** (also known as the amendment procedure) in which the candidates are
ordered before the voting rounds begin, then in the first round the voters choose between the first two candidates, in the second round they choose between the winner of the first round and the third candidate, and so on until the last round in which the voting is between the last candidate and the winner of the penultimate round.

Approval voting: A voter may approve or disapprove any number of candidates (point 1 indicates approval of a candidate and point 0 denotes disapproval) except that the voter cannot approve all or disapprove all the candidates. The candidate with maximal votes wins.

Borda rule: Voters strictly rank the candidates and a candidate’s total score is then calculated based on scores associated with each rank. The candidate with the highest total score wins.

Negative voting: Each voter is asked to name a candidate whom he least likes to win. The candidate with the least number of such votes wins.

Instant runoff voting: Instant runoff voting, also known as *single transferrable voting*, requires voters to submit a full ranking of candidates in a single ballot. If no candidate wins a majority of the top rank, the candidate with the fewest top-rank votes gets eliminated and a fresh count is taken with rankings rearranged. This process continues until some candidate secures a majority of the top rank. A second variant of this voting does not use the *majority top-rank trigger*, instead eliminates candidates sequentially: start with the candidate with the minimum top-rank votes, then after vote transfers again eliminate who has the least top-rank votes, and so on (with ties broken by a deterministic tie-breaking rule).

Plurality runoff rule: All but two candidates are eliminated in the first round using plurality rule and then the winner is selected in a second ballot from the remaining two using majority rule.

Exhaustive ballot: It is same as the weakest link voting (described in the Introduction) except for the *majority vote trigger*.

Copeland and Simpson rules: These two one-shot voting rules are based on voters submitting only strict order rankings (so that $J = k$). For Copeland rule, candidate a, compared with another candidate b, is assigned a score $+1$ if a majority prefers a to b, -1 if a majority prefers b to a, and 0 if it is a tie. Summing up the scores over all $b, b \neq a$, yields the Copeland score of a. A candidate with the highest such score, called a *Copeland winner*, is elected. For Simpson rule, for candidate a
denote by $N(a,b)$ the number of voters preferring a to another candidate b. The Simpson score of a is the minimum of $N(a,b)$ over all $b, b \neq a$. A candidate with the highest such score, called a *Simpson winner*, is elected.

References

