The Fertility of Highly Educated Women and its Implications
For the Relationship between Income Inequality and Economic Growth

Hosny Zoabi1, Moshe Hazan2

Discussion Paper No. 10-12

May 2012

The paper can be downloaded from: http://sapir.tau.ac.il

Thanks to the The Pinhas Sapir Center for Development, Tel Aviv University for their financial support.

1 Hosny Zoabi - The Eitan Berglas School of Economics, Tel Aviv University, Ramat Aviv, Tel Aviv 69978. Email:hosnyz@post.tau.ac.il
2 Moshe Hazan - Department of Economics, Hebrew University of Jerusalem, Mt. Scopus, Jerusalem 91905. Email:hazan.moshe@gmail.com
Abstract

Conventional wisdom suggests that in developed countries income and fertility are negatively correlated. We present new evidence that between 2001 and 2009 the cross-sectional relationship between fertility and women's education in the U.S. is U-shaped. At the same time, average hours worked increase monotonically with women's education. This pattern is true for all women and mothers to newborns regardless of marital status. In this paper, we advance the marketization hypothesis for explaining the positive correlation between fertility and female labor supply along the educational gradient. In our model, raising children and home-making require parents' time, which could be substituted by services bought in the market such as baby-sitting and housekeeping. Highly educated women substitute a significant part of their own time for market services to raise children and run their households, which enables them to have more children and work longer hours.
1 Introduction

Ever since the demographic transition, conventional wisdom suggests that income and fertility are negatively correlated. This has been documented at the aggregate level in a cross-section of countries (Weil 2005); over time within countries and regions (Galor 2005, Galor 2011) and in cross-section of households in virtually all developing and developed countries (Kremer and Chen 2002). Jones and Tertilt (2008) use data from the U.S. census to document the history of the relationship between fertility choice and key economic indicators at the individual level for women born between 1826 and 1960. They found a strong negative cross-sectional relationship between fertility on the one hand, and income and education of both husbands and wives on the other hand, for all cohorts. Finally, Preston and Sten Hartnett (2008) and Isen and Stevenson (2010) find similar pattern for cohorts born through the late 1950s.

Using data from the American Community Survey, we present below new evidence on the cross-sectional relationship between fertility and women’s education in the U.S. We show that between 2001 and 2009, the relationship between total fertility rate (henceforth: TFR) and female education is U-shaped. Specifically, we classify women into five educational groups: no high school degree, high-school degree, some college, college degree and advanced degree. We show that TFR decreased from 2.24 for the first group to 2.11 and 1.79 for the second and third groups, respectively, but then rises to 1.93 and 1.98 for the fourth and fifth groups, respectively.

We extend our examination of the association between fertility and women’s education by estimating linear probability models. This approach enables us to control for various characteristics such as marital status, age, state of residence and family income, which may be responsible for the relationship between fertility and women’s education. We find that the partial correlation between fertility and women’s education is indeed U-shaped.

\(^1\text{Shang and Weinberg (2009) study in detail the fertility of college graduate women. They show that since the late 1990s, fertility of college graduates has increased over time. They do not, however, discuss the cross-sectional relationship between fertility and female education, which is the focus here.}\)
Turning to labor supply, standard models predict that to the extent that the substitution effect dominates the income effect, more educated women – who face higher wages – supply more hours to the labor market. Indeed, this prediction is well documented and is verified in our data as well. Meanwhile, standard models of household economics suggest that there is a negative relationship between female labor supply and fertility: women who work more have less time to raise children (Gronau 1977, Galor and Weil 1996). Thus, our findings regarding the pattern of fertility, along with the pattern of labor supply, raise two questions: (i) what can account for the U-shaped fertility pattern and (ii) what can account for the positive correlation between fertility and labor supply for highly educated women.

We advance an explanation that relies on the marketization hypothesis (Freeman and Schettkat 2005, Freeman 2007). We argue that highly educated women find it optimal to purchase services such as nannies, baby-sitters and day-care, as well as to purchase housekeeping services to help them run their homes more efficiently. This enables these highly educated women to have more children and work more hours in the labor market. Indeed, Cortes and Tessada (2011) found that (i) low-skilled immigration has increased hours worked by women with advanced degrees and that the labor supply effects are significantly larger for those with young children. (ii) Using time-use data for the period 2003 and 2005, Cortes and Tessada also found that hours spent on household chores declines quite dramatically along the educational gradient and (iii) using consumer expenditure data, they show that the fraction of women who uses housekeeping services increases sharply with education. Finally, Furtado and Hock (2010) found that college educated women living in metropolitan areas with larger inflows of low skilled immigrants experience much small tradeoff between work and fertility.

To illustrate our argument, we use a standard model in which parents derive utility from consumption and the full income of children. On the children side, parents decide upon the quantity of children (fertility) and their quality (education). We follow the standard models along two assumptions. First, we assume that education is bought in the market, as in de la Croix and Doepke (2003) and
Moav (2005) and show that for highly educated women education is relatively cheaper, which allows them to purchase more education for their children, even if they allocate the same share of income for quality. Second, as in Hazan and Berdugo (2002) and de la Croix and Doepke (2003), we assume that nature equips children with a basic skill. This basic skill implies that as parents’ human capital increases, the share of income that is allocated to the quality of each child increases at the expense of the share of income allocated to quantity. This happens because the value of the basic skill in terms of income is relatively high for low income parents. As a result, parents find it optimal to spend a relatively large share of income in quantity and a relatively low share in quality. In contrast, for high income parents, the value of the basic skill is relatively small, which induces parents to allocate a higher share of income for quality at the expense of quantity.

To emphasize the reliance on market substitutes for parental time, we deviate from the existing models (e.g. Galor and Weil 2000) by allowing parents to substitute other people’s time for their own time by purchasing child-care or babysitting services in the market. This marketization process is an essential element in our mechanism that yields U-shaped fertility pattern. To see this, ignore for the moment this marketization channel, and assume that quantity requires parents’ time only. In this case, with an increase in parent’s human capital, both parent’s income and the price for quantity increase by the same proportion. However, since high income parents allocate a lower share of their income to quantity, the optimal number of children monotonically declines.

Marketization, however, affects the price for quantity that parents face. For parents with low levels of human capital, (i.e., low income), marketization is low and thus the parents themselves engage in most of the child raising. Thus, the intuition explained above holds. In contrast, parents with high levels of human capital optimally outsource a major part of their child-raising, which, in turn, reduces the price for children from parents’ point of view. We show that this reduction can be sufficiently large to induce an increase in fertility above a certain level of human capital.

2 Aiyagari, Greenwood and Seshadri (2002) allow parents to substitute child-care for their own time. However, in their model, fertility is exogenous and, therefore, they do not study the effect of such services on fertility choice.
In terms of parents’ time, our theory suggests that time spent on raising children may decrease or increase with parents’ human capital. In our basic model, where education is only bought in the market, parents’ time spent on raising children decreases with parents’ human capital. This occurs for two reasons. First, as discussed above, the fraction of income allocated to raising children decreases with parents’ human capital. Second, parents’ reliance on market substitutes increases with human capital. However, Guryan, Hurst and Kearney (2008) found that mother’s time allocated to childcare increases with mother’s education.

In their empirical analysis, however, childcare is defined as the sum of four primary time use components: “basic”, “educational”, “recreational” and “travel”. Clearly, the educational and recreational components and part of the travel component are investment in children’s quality.

Ramey and Ramey (2010) reconcile the seemingly paradoxical allocation of time, according to which mothers with a higher opportunity cost of time spend more, rather than less time with their children despite the availability of market substitutes. They argue that as slots in elite postsecondary institutions have become scarcer, parents responded by investing more in their children’s quality so that they appear more desirable to college admissions officers. Since more educated parents spend more of their own time and on market goods and services related to child’s quality, it implies that parental time and market goods and services are strong complements in the production of children’s quality. To capture this idea, we extend our model in Section 3.3 by assuming that children’s quality requires not only education bought in schools but also parental time, and show that, consistent with the evidence, the model can predict that parents’ time allocated to children increases with parents’ human capital.

On the consumption side, we assume that individuals combine time and a market good to produce the consumption good that enters their utility function. Furthermore, we assume that parents can substitute a housekeeper’s time for their own time by purchasing these services in the market. This substitutability implies that the share of income devoted to home production by parents decreases as parents’ education increases.

3 Table 2 in Guryan et al. (2008) reports that hours per week spent in total childcare are 12.1, 12.6, 13.3, 16.5 and 17 for mothers with <12, 12, 13-15, 16 and 16+ years of schooling, respectively.
One may suggest an alternative hypothesis to explain the positive association between fertility and female labor supply for highly educated women: spouses of highly educated women may work less to compensate for their wives’ extra hours in the labor market. We show, however, that spouses of these highly educated women supply more hours compared to spouses of less educated women. As for the fertility pattern, a competing explanation can be related to marital status. If more educated women have higher marriage rates and if marital fertility is higher than non-marital fertility, this can give rise to the pattern we find. Looking at marriage rate by educational groups, we show that the fraction of currently married women is lower among those with advanced degrees compared to those with just a college degree.

As a last piece of evidence in favor of our theory, we study the association between fertility, women’s education and income inequality. The idea is that the higher the income inequality, the lower is the relative price of unskilled labor intensive services, such as childcare and housekeeping. Since in theory the marketization mechanism is more effective when the relative price of these services is lower, inequality should positively affect the fertility of highly educated women. We add income inequality to our linear probability models that study the association between fertility and women’s education, and allow the partial association of fertility and inequality to vary with education. Taking women lacking a high-school diploma as the base group, we find that the difference in the conditional probability of giving a birth between women in any educational group and the base group increases with inequality and that this difference increases along the educational gradient.

The rest of the paper is organized as follows. Section 2 presents the evidence on the U-shaped fertility pattern. In Section 3, we lay out the model and present the main results of the theory. In Section 4, we provide evidence on labor supply and marriage rates, as well as on the association between women’s education, fertility and income inequality to support our theory. Finally, Section 5 provides concluding remarks.
2 Patterns of American Fertility by Education

We use the American Community Survey (henceforth: ACS) to document basic facts on the fertility behavior of American women and the correlation between fertility behavior and the education of these women (Ruggles, Alexander, Genadek, Goeken, Schroeder and Sobek 2010). The ACS is a suitable survey to study current trends in fertility of American women, as it explicitly asks each respondent whether she gave birth to any children in the past 12 months.

We pooled data from the ACS for the years 2001–2009 and restrict our sample to white, non-Hispanic women who live in households under the 1970 definition. Using these data, we estimate age-specific-fertility-rates by five educational groups; no high school diploma, high school diploma, some college, college, and advanced degrees. Figure 1 shows these estimates.

The pattern of these estimates is not surprising: while fertility rates of women who did not complete high school or have a high school diploma peak at ages 20–24, they peak at ages 25-29 for women with some college education and at ages 30–34 for women with college or advanced degrees.

Next, we sum up these age-specific-fertility-rates, to obtain estimates of TFR. In principal, we could estimate age-specific-fertility-rates by educational groups year by year, and present TFR by educational group for each year between 2001 and 2009. Table 1 shows these estimates. As can be seen from the table, in each of these years, women with advanced degrees had a higher TFR than women with some college or college, and in most years, women with college degree had higher TFR than women with some college. However, given the nature of TFR, one may be worried that we may pick temporary differential trends in the timing of births. To address this concern, we pooled all the observations over the period 2001-2009 and estimate TFR for this period as a whole.

Figure 2 shows our findings. As can be seen from the figure, TFR declines for women up to those with some college, but then increases for women with col-
Figure 1: Age-Specific-Fertility-Rates by educational groups, 2001-2009. Authors’ calculations using data from the American Community Survey.

College and advanced degrees. Specifically, TFR among women with no high school diploma is 2.24, among women with high-school diploma it is 2.11 and among women with some college it is 1.79. However, the TFR among women with college degree is 1.93 and among women with advanced degrees it is 1.98.

2.1 Robustness of the U-shape fertility

Is the U-shaped relationship between women’s education and TFR robust? We consider two types of robustness checks. In the first of these tests, we estimate TFR using a different survey’s data: data from the March Current Population Survey (King, Ruggles, Alexander, Flood, Genadek, Schroeder, Trampe and Vick 2010) for the years 2001-2009. We compare the estimates to those shown in Figure 1. Our second exercise utilizes the micro structure of the ACS and inves-
Figure 2: Total fertility rate, 2001-2009. Authors’ calculations using data from the American Community Survey.

tigates the partial association between fertility and women’s education by using regression models.

2.1.1 TFR using Alternative Data Sets

Recall that the main reason for using the ACS data is the specific question that asks each respondent whether she gave birth to any children in the past 12 months. The March Current Population Survey (henceforth March CPS) as well as the ACS asks a related question about the age of the youngest own child in the household. One might expect, therefore, that any woman who reported giving a birth during the previous 12 months would answer that the age of youngest own child
in her household is 06. Given this, we construct a variable for the occurrence of a birth if a woman reports having a child aged 0 years old.

We begin by comparing age-specific-fertility-rates as measured directly in the ACS using the question about giving birth during the past 12 months and those that correspond to the variable constructed from the age of the youngest own child. The correlation between the two sets of age-specific-fertility-rates is larger than 0.99 for all five educational groups. However, the age-specific-fertility-rates based on the latter variable are systematically lower than those presented in Figure 1. More importantly, once we compute TFR using these two sets of age-specific-fertility-rates, we notice that the gap between the two series, which are shown in Figure 3 monotonically decreases with women’s education. Nevertheless, notice that the ratio between the two estimates for women with at least college degree is very similar. Specifically, for women with exactly college degree, the ratio is about 0.89 while for women with advanced degrees it is about 0.9. Thus, it is worthwhile to estimate TFR using this indirect inference on the occurrence of a birth from data of the March CPS for the period 2001-2009. Figure 3 presents the estimate for TFR using the CPS data. Notice that the estimates based on this indirect approach are very similar across the ACS and the March CPS data sets for women with up to college degree. For women with advanced degrees, however, the estimated TFR using the March CPS is much larger.

We conclude from this analysis that the total fertility rate is lowest among women with some college training, increases for women holding a college degree only and rising further for women with advanced degrees.

2.1.2 The Partial Association between Fertility and Women’s Education

Regression models provide a different means of presenting the association between fertility and women’s education. The advantage of this approach is that

6Clearly, multiple births, infant mortality and giving a child over to adoption or to relatives to raise the child could create some differences between these two measures, although we conjecture that in practice these are quantitatively unimportant. We therefore conjecture that discrepancies between the two measures are related to measurement errors.
Figure 3: Three sets of estimates for Total Fertility Rate 2001-2009. Authors’ calculations using data from the American Community Survey and the March CPS.

we can control for various characteristics such as age, marital status, family income, year and state effects that may be responsible for the relationship between fertility and women’s education. Table 2 shows the results from linear probability models that take the following structure:

\[b_{ist} = \epsilon_{ist} \cdot \pi + X_{ist}^t \beta + \epsilon_{ist} \]

where the dependant variable, \(b_{ist} \), is a binary variable that takes the value 1 if woman \(i \) living in state \(s \) in year \(t \) gave birth to any children during the reference period and 0 otherwise, \(\epsilon_{ist} \) is a set of five dummy variables that correspond to the five educational levels described above and the coefficients of interest are \(\pi \). \(X_{ist} \) denotes other covariates including marital status dummies, age dummies, year and state dummies, as well as family income and family income squared. The educational group of high-school dropouts is the omitted category, so the
coefficients on the other educational groups can be interpreted as the difference in the probability of giving birth relative to that group.

In column (1) we regress b_{ist} only on the educational dummies. Thus, the coefficients in this column are the unconditional differences in the probability of giving a birth, namely “fertility rates”, relative to fertility rates among women who do not have a high school diploma. As can be seen, fertility rates monotonically increase with education. Column (2) adds dummies for marital status. Since the fraction of currently married women is the lowest for women lacking a high school diploma (see Figure 8 below) and one expects to find higher fertility rates among married women, controlling for marital status should lower the coefficients on education in column (2). Indeed, the coefficients are substantially lower in column (2) than in (1) and in particular, those on the groups high-school diploma and some college change sign and are now negative. The positive coefficients on college and advanced degrees imply a U-shaped pattern in fertility rates.

In column (3), we add age dummies. Since age is not monotonically related to fertility rates, a priori the effect on the educational dummies is not predictable. As can be seen in column (3), though, adding age dummies substantially reduces the coefficients on the educational dummies. Now the coefficients on high-school diploma, some college and college graduates are negative and significant, while that on advanced degrees is essentially zero. Nevertheless, this still implies a U-shaped relationship between fertility rates and women’s education. In Column (4) we add year dummies and in column (5) we also add state dummies. Neither the year dummies nor the state dummies change the results of column (3). Finally, in column (6) we add total family income and total family income squared. Interestingly, the partial correlation between family income and fertility rate is also U-shaped, even after controlling for women’s education. More importantly, the inclusion of family income does not affect the coefficients on high-school graduates and some college, while it increases the coefficients on

7This may seem at odds with the reported TFR in Figure 2, where TFR is the highest for women without high-school diplomas. Notice, however, that TFR sums up age-specific-fertility-rates, which are mean births within educational-age groups; it could well be that the fertility rate be lower even if the sum of the age-specific-fertility-rates were larger.
college graduates and advanced degrees, where the later becomes positive and significant. This strengthen the U-shaped relationship between fertility rate and women’s education.

2.1.3 Total Fertility Rates and Completed Fertility rates

So far we present evidence that the relationship between women’s education and a flow measure of fertility is U-shaped. One may be skeptical, however, whether this pattern in period fertility rates will be translated into completed fertility rates. In principal, total fertility rate and completed fertility rate need not coincide if age-specific-fertility-rates are not stationary. Indeed, a tendency toward delaying fertility among American women over the long-run has been extensively documented (Caucutt, Guner and Knowles 2002, Shang and Weinberg 2009).

To explore this issue, Figure 4 shows age-specific-fertility-rates by education groups for each year between 2001 and 2009. The main message from this figure is that the age-specific-fertility-rates seem rather stationary over the 2000s for all groups, though this is particularly true for three intermediate groups, namely women with a high-school diploma, women with some college education and women with exactly college degree. Another way of looking for stationarity of the age-specific-fertility-rates is to plot the fertility rates of each education-age group over the years 2001-2009 and examine whether there is a positive or negative trend over time. Such an analysis (not shown) reveals that with the exception of women with advanced degrees in the age-group 20-24, there is no trend in fertility rates in the education-age cells. For women with advanced degrees in the age-group 20-24, there is a slight tendency toward delaying fertility, though quantitatively this decline is very small.

We conclude that since a decade represents roughly one-third of a woman’s fertile period, and that over the 2000s fertility rates are roughly stationary, there is a good chance that the period and cohort measures of fertility would coincide.

5The results of these six models are essentially the same if we use a probit instead of a linear probability model. These results are shown in Table 3 but are not discussed in the text.
Figure 4: Age-Specific-Fertility-Rates by Educational Groups and Year, 2001-2009. Authors’ calculations using data from the American Community Survey.
3 The Model

3.1 Structure

There is a continuum of mass one of adult individuals that differ by their level of human capital. Each individual forms a household, works, and chooses consumption and her number of children. Children are being raised and educated. Education is provided by the market through schools. To raise children, households combine parent’s time and time purchased in the market. Likewise, households combine parent’s time, time purchased in the market along with a market good to produce the consumption good. This market good serves as the numeraire. Finally, the remaining time is allocated to labor market participation.

Let h_i denote the human capital of individual i, which also equals her market productivity. The preferences of household i are defined over consumption, c_i, and total full income of the children, $n_i h_i'$. They are represented by the utility function:

$$u_i = \ln(c_i) + \ln(n_i h_i').$$

(1)

The budget constraint is:

$$h_i = p_{ci} c_i + p_{ni} n_i + n_i p_{ei} e_i,$$

(2)

where p_{ci}, p_{ni} and p_{ei} are the prices of consumption, quantity of children and children’s education, e_i, faced by parent i, respectively.

Children’s human capital, h_i', is determined by their level of education, e_i and basic skills with which nature equips each child, $\eta > 0$, regardless of her parent’s characteristics. The human capital production function is:

$$h_i' = (e_i + \eta)^\theta, \quad \theta \in (0, 1).$$

(3)
Education is provided in schools. We assume that the average level of human capital among teachers is \bar{h}. We follow de la Croix and Doepke (2003) by assuming that \bar{h} is the average human capital in the economy, $\bar{h} = \int_0^{\infty} h_i dF(h_i)$, where $F(h_i)$ is the distribution of human capital, although nothing hangs on this choice. As all parents face the same market price for education, $p_{ei} = p_e = \bar{h}$ the cost of educating n_i children at the level e_i is given by

$$TC_{ci}^e = n_i p_e e_i = n_i \bar{h} e_i.$$ \hfill (4)

Raising children requires time independently of education. The time required to raise n children can be supplied by the parent or bought in the market, e.g., child-care or babysitters. The production function of raising n children is:

$$n = (t_n^M)^{\phi}(t_B^n)^{1-\phi}, \quad \phi \in (0,1)$$

where t_M^n is the time devoted by the mother and t_B^n is the time bought in the market, e.g., a babysitter. We assume that the price of one unit of time bought in the market is some level of human capital denoted by \bar{h}. This implies that \bar{h} is the average human capital among babysitters.

The cost of raising n children is, therefore, given by the cost function,

$$TC^n(n, \bar{h}, h^i) = \min_{t_M^n, t_B^n} \{ t_M^n h_i + t_B^n \bar{h} : n = (t_M^n)^{\phi}(t_B^n)^{1-\phi} \}.$$

The optimal t_M^n and t_B^n are:

$$t_M^n = \left(\frac{\phi \bar{h}}{1 - \phi \bar{h}} \right)^{1-\phi} n$$ \hfill (5)

and

$$t_B^n = \left(\frac{1 - \phi \bar{h}}{\phi} \right)^{\phi} n.$$ \hfill (6)

This modeling approach is similar to Greenwood, Seshadri and Vandenbroucke (2005).
Using these optimal levels we obtain the cost function:

\[TC^m(n, h, h) = p m n = \varphi h^{1-\phi} h^{\phi} n, \]

(7)

where \(\varphi \equiv \left(\frac{\phi}{1-\phi} \right)^{1-\phi} + \left(\frac{1-\phi}{\phi} \right)^\phi \).

Following Becker (1965), the consumption good that enters directly into the utility function is produced by combining time and a market good. However, our extension here is that the time allocated to this production can be either supplied by the mother or purchased in the market. The production function is:

\[c = m^{1-\alpha} \left[(t_M^c)^\sigma + (t_H^c)^\sigma \right]^{\alpha/\sigma}, \quad \sigma \in (0, 1) \]

where \(m \) is the market good and \(\frac{1}{1-\sigma} > 1 \) is the elasticity of substitution. That is, \(t_M^c \) and \(t_H^c \) are assumed to be gross substitutes. This assumption captures the idea that mother’s time and the time of a housekeeper is highly substitutable.\(^{10}\) We assume that the price of one unit of time bought in the market is \(\hat{h} \). This implies that \(\hat{h} \) is the average human capital among housekeepers.

The cost of \(c \) units of consumption is, thus, given by the cost function,

\[TC^c(c, \hat{h}, h) = \min_{m, t_M^c, t_H^c} \left\{ m + t_M^c h + t_H^c \hat{h} : c = m^{1-\alpha} \left[(t_M^c)^\sigma + (t_H^c)^\sigma \right]^{\alpha/\sigma} \right\}. \]

The optimal \(t_M^c \) and \(t_H^c \) are:

\[t_M^c = \frac{\left(\frac{\alpha}{1-\alpha} \right)^{1-\alpha}}{h_1^{1-\alpha} \left(1 + \left(\frac{\hat{h}}{h} \right)^\frac{\sigma}{1-\sigma} \right)^{1+\alpha\left(\frac{\sigma}{\phi} - 1 \right)} c}. \]

(8)

\(^{10}\)Notice that we assume that mother’s time and housekeeper’s time in producing the consumption good are more substitutable than mother’s time and baby-sitter’s time in raising children. This assumption can be justified by noting that pregnancy and breastfeeding are less substitutable than cleaning and cooking. For example, Sacks and Stevenson (2010) reporting that during the 2000s, mothers on average spend well over 2 hours a day breastfeeding their infants.
and

$$t^c_H = \frac{(\frac{\alpha}{1-\alpha})^{1-\alpha} h_i^{\alpha + \frac{\sigma}{1-\sigma}}}{\hat{h}^{\frac{1}{1-\sigma}} \left(1 + \left(\frac{h_i}{\hat{h}}\right)^{\frac{\sigma}{1-\sigma}}\right)^{1+\alpha\left(\frac{1}{\sigma}-1\right)c}}$$ \hspace{1cm} (9)

Substituting these optimal factors into the cost function yields:

$$TC^c(c, \hat{h}, h^i) = p_c c = \frac{h_i^{\alpha}}{\omega \left(1 + \left(\frac{h_i}{\hat{h}}\right)^{\frac{\sigma}{1-\sigma}}\right)^{\alpha\left(\frac{1}{\sigma}-1\right)c}}$$ \hspace{1cm} (10)

where $\omega = \alpha^{\alpha}(1 - \alpha)^{1-\alpha}$.

3.2 Equilibrium

Given the price of quality of children, quantity of children and consumption in equations (4), (7) and (10), respectively, the solution to maximizing (1) subject to the budget constraint, (2) yields:

$$e_i = \frac{\theta \varphi \hat{h}^{1-\phi} h_i^{\phi} - \eta \hat{h}}{h(1 - \theta)}$$ \hspace{1cm} (11)

$$n_i = \frac{h_i(1 - \theta)}{2(\varphi \hat{h}^{1-\phi} h_i^{\phi} - \eta \hat{h})}$$ \hspace{1cm} (12)

and

$$c_i = \frac{\omega}{2} h_i^{1-\alpha} \left(1 + \left(\frac{h_i}{\hat{h}}\right)^{\frac{\sigma}{1-\sigma}}\right)^{\alpha\left(\frac{1}{\sigma}-1\right)}$$ \hspace{1cm} (13)

Equations (5), (6), (8), (9), (11), (12) and (13) yield the following seven propositions.
Proposition 1 The educational choice, e^*, is strictly increasing in h_i

Proof: Follows directly from differentiating equation (11) with respect to h_i. □

The intuition behind this result is straightforward. With a log linear utility function from consumption and full income of the children, the optimal level of education is independent of the parent’s human capital, since any additional unit of education is given to all children equally. Moreover, since any additional child will be given the same education as her siblings, the optimal level of education depends negatively on the price of education (quality) relative to fertility (quantity).

The value of parental time is equal to her human capital. While quality is bought in the market at a given cost, independently of parents human capital, quantity requires some of parent’s time and, thus, its price positively depends on parent’s human capital. Consequently, the relative price of quality declines in the parent’s human capital, yielding a higher investment in education.

Notice that as parent’s human capital increases, the share of income that is allocated to the quality of each child increases on the expense of the share of income allocated to quantity. The intuition for this is simple. For low income parents, the basic skill, η, which is equivalent to $\eta\bar{h}$ in terms of income, is relatively important. As a result, parents find it optimal to invest a large share of income in quantity and a low share in quality. In contrast, for high income parents, the value of the basic skill in term of income, $\eta\bar{h}$, is relatively small, which induces parents to allocate a higher share of income for quality on the expense of quantity.

Proposition 2 The fertility choice, n^* is U-shaped as a function of h_i

Proof: Differentiating (12) with respect to h_i yields:

$$\frac{\partial n^*}{\partial h_i} = \frac{(1 - \theta) \left((1 - \phi) \varphi h_i^{1 - \phi} h_i^\phi - \eta \bar{h} \right)}{2 \left(\varphi h_i^{1 - \phi} h_i^\phi - \eta \bar{h} \right)^2}.$$

Notice that for parents with low human capital, η could be large enough such that the optimal level of education is 0. We ignore this corner solution and assume that even the parents with the lowest level of human capital, h, still choose positive level of education. Formally, we assume that $\theta \varphi h_i^{1 - \phi} h_i^\phi - \eta \bar{h} > 0 \ \forall h_i$.

11 Notice that for parents with low human capital, η could be large enough such that the optimal level of education is 0. We ignore this corner solution and assume that even the parents with the lowest level of human capital, \bar{h}, still choose positive level of education. Formally, we assume that $\theta \varphi h_i^{1 - \phi} h_i^\phi - \eta \bar{h} > 0 \ \forall h_i$.

18
Thus,

\[
\frac{\partial n^*}{\partial h_i} \begin{cases}
< 0, & \text{for } h_i < \tilde{h} \\
= 0, & \text{for } h_i = \tilde{h} \\
> 0, & \text{for } h_i > \tilde{h}
\end{cases}
\]

Where \(\tilde{h} = \left(\frac{\eta h}{(1-\phi)\phi h(1-\phi)} \right)^{\frac{1}{\phi}} \).

The intuition behind this result is as follows. As described above, the optimal level of education depends on the relative price of quality and the basic skill. Fertility, however, depends on the share of income allocated to quantity and the price of an additional child. Above, we already explained that the share of income allocated to quantity decreases with parent’s human capital. We now turn to analyze how the price for quantity changes with parent’s human capital to determine the optimal level of quantity.

Marketization is an essential element in our mechanism that yields U-shaped fertility pattern. Let us ignore for the moment this marketization channel, and assume that quantity requires parents’ time only. In this case, with an increase in parent’s human capital, both: parent’s income and the price for quantity increase by the same proportion. Since parents allocate a lower share of their income to quantity, the optimal number of children monotonically declines.

Marketization, however, affects the price for quantity that parents face. For parents with low levels of human capital, (i.e., low income), marketization is low and most of child raising is done by parents. Thus, the intuition explained above holds. Parents with high levels of human capital, in contrast, outsource a major part of child raising, which, in turn, reduce the price for children from parents’ point of view. This reduction could be sufficiently large to induces an increase in fertility.

Notice from equation (7) that the price of quantity is \(\phi h^{1-\phi} h_i^{\phi} \). Thus, although it increases with parents’ human capital, marketization causes this price to increase at a lower pace than income does.\footnote{Notice that the Cobb-Douglas production function for quantity is not crucial for this result. The Appendix provides a proof that this result holds for any CES production function.} Thus, for all \(h_i > \tilde{h} \), marketization implies
that the share of income allocated to quantity decreases at a lower pace than price does, causing fertility to increase.

Proposition 3 Mother’s time spent on raising children (quantity), t_{M}^n, is strictly decreasing with income, h_i.

Proof: Substituting (12) into (5) gives:

$$t_{M}^n = \frac{(1 - \theta)}{2} \left(\frac{\phi}{1 - \phi} \right)^{1-\phi} \frac{h_{i}^{1-\phi}h_{i}^{\phi}}{\left(\varphi h_{i}^{1-\phi}h_{i}^{\phi} - \eta h \right)}, \quad (14)$$

differentiating (14) with respect to h_i, yields:

$$\frac{\partial t_{M}^n}{\partial h_i} = -\phi \left(\frac{\phi}{1 - \phi} \right)^{1-\phi} \frac{(1 - \theta)}{2} \frac{\eta \left(h/h_i \right)^{1-\phi}}{\varphi h_{i}^{1-\phi}h_{i}^{\phi} - \eta h} < 0.$$\hfill \square

The intuition here is straightforward. First, with a log linear utility function as given in (1), the share of resources allocated to children is one-half. Secondly, as discussed above, the share of income allocated to quantity is declining in h_i. Finally, since child-care and mother’s time are aggregated using a homothetic production function, the share of income allocated to each one of these two factors is independent of h_i. Thus, parents’ time that is allocated to quantity declines with mother’s education. In Section 3.3 below we extend the model such that mother’s time is also used for producing child’s quality and show that mother’s total time spent on children can increase, consistent with the empirical findings from time use data (e.g. Guryan et al. 2008, Ramey and Ramey 2010).

Proposition 4 Mother’s time spent on home production, t_{M}^c, is strictly decreasing with income, h_i.

Proof: Substituting (13) into (8) yields

$$t_{M}^c = \frac{\alpha}{2 \left(1 + \left(h_i/\hat{h} \right)^{1-\sigma} \right)}, \quad (15)$$

20
which is, unambiguously, decreasing in \(h_i \).

Since the consumption good is a Cobb-Douglas aggregate of the market good and time, the share of resources allocated to each one of these factors is independent of \(h_i \). However, the assumed gross substitutability between mother’s time and housekeeper’s time yields a declining time spent by the mother as its price, \(h_i \), increases.

Proposition 5 The labor supply, \(l^* \equiv 1 - t^e_M - t^c_M \), is strictly increasing with mother’s income, \(h_i \).

Proof: Follows directly from propositions 3 and 4.

Proposition 6 The amount of baby-sitter services purchased in the market, \(t^s_B \), is:

i. Strictly increasing with income, \(h_i \), if \(\theta < 1 - \phi \).

ii. Strictly increasing with income for all \(h_i \geq \tilde{h} \).

Proof: Notice from (6) that the amount of baby-sitter services purchased per child is strictly increasing in \(h_i \). However, \(n^* \) is strictly decreasing in \(h_i \) for all \(h_i \leq \tilde{h} \) and strictly increasing in \(h_i \) for all \(h_i > \tilde{h} \). Thus part ii of the proposition is trivial. Substituting (12) into (6) and differentiating with respect to \(h_i \), implies that \(\frac{\partial t^s_B}{\partial h_i} \) is positive if \(\phi \eta h_i^{1-\phi} > (1 + \phi) \eta \tilde{h} \). Notice that for an internal solution for \(e^* \), we assumed that \(\theta \phi \eta h_i^{1-\phi} > \eta \tilde{h} \) for all \(h_i \). Thus, a sufficient condition for \(\frac{\partial t^s_B}{\partial h_i} > 0 \) for all \(h_i \) is \(\theta < 1 - \phi \).

The intuition behind part i is simple. For \(h_i < \tilde{h} \) there are two opposite effects. On the one hand baby-sitter services purchased per child are increasing in \(h_i \), while the number of children is decreasing in \(h_i \). Notice that the rate at which fertility declines with income depends on the returns to education, \(\theta \), relative to the elasticity of baby-sitter services with respect to children. If the former is larger, the slope of the decline in fertility due to the quantity-quality trade-off is sufficiently large and, therefore, total baby-sitter services purchased is not increasing with income. Conversely, if the elasticity of baby-sitter services with respect to children is sufficiently large, total baby-sitter services purchased is increasing for all levels of income.
Proposition 7 The amount of housekeeping services purchased in the market, \(t_{h}^m \), is strictly increasing with mother’s income, \(h_i \).

Proof: Follows directly from substituting (13) into (9) and differentiating with respect to \(h_i \). \(\square \)

3.3 An Extension

The model analyzed above is consistent with data on time allocated to the labor market and to home production (excluding childcare). However, it also suggests that mother’s time allocated to raising children decreases with mother’s education. This is because the increasing part of the U-shaped fertility pattern in our model is obtained from the availability of market services, which are relatively cheap for highly educated mothers. As discussed in the Introduction Guryan et al. (2008) find that mother’s time allocated to childcare increases with mother’s education. As discussed in the Introduction, however, Guryan et al. defined childcare as the sum of four primary time use components: “basic”, “educational”, “recreational” and “travel”. Clearly, the educational and recreational components and part of the travel component are investment in children’s quality, a component which, in our model, is bought in the market.

Ramey and Ramey (2010) reconcile the seemingly paradoxical allocation of time, according to which mothers with a higher opportunity cost of time spend more, rather than less time with their children despite the availability of market substitutes. They argue that as slots in elite postsecondary institutions have become scarcer, parents responded by investing more in their children’s quality so that they appear more desirable to college admissions officers. Since more educated parents spend more of their own time and on market goods and services related to child’s quality, it implies that parental time and market goods and services are strong complements in the production of children’s quality.

To capture this idea, we extend our model by assuming that children’s quality requires not only education bought in schools but also parental time. Thus, con-
consistent with our notation, let child’s education be

\[e_i = \left[(t_{SC}^e)^\zeta + (t_M^e)^\zeta \right]^{1/\zeta}, \]

(16)

where \(t_{SC}^e \) and \(t_M^e \) are the time invested in education provided by the school and parent, respectively; and \(\zeta \in (-\infty, 0) \). To convey our idea in a simple example we assume that there is perfect complementarity between school time and parental time invested in children’s education. Formally we assume that \(\zeta = -\infty \) and (17) becomes: \(e_i = \min \{ (t_{SC}^e), (t_M^e) \} \). This implies that at the optimum, for any unit of time provided by the school, a similar unit is provided by the parent in order to produce a unit of education:

\[e_i = t_{SC}^e = t_M^e, \]

(17)

and the cost of education, equation (4), becomes:

\[TC_i^e = n_i p_e e_i = n_i (\bar{h} + h_i) e_i. \]

(18)

Given this new price for quality of children in equation (18), the price of quantity of children and consumption in equations (7) and (10), respectively, the solution to maximizing (1) subject to the budget constraint, (2) becomes:

\[e_i = \frac{\theta \phi h_i^{1-\phi} h_i^\phi - \eta(\bar{h} + h_i)}{(h + h_i)(1 - \theta)}, \]

(19)

\[n_i = \frac{h_i(1 - \theta)}{2(\phi h_i^{1-\phi} h_i^\phi - \eta(\bar{h} + h_i))}. \]

(20)

Notice that as in the basic model, the economic forces that are behind the U-shaped fertility pattern and the increasing relationship between parental education and children’s education are still at work: the decreasing part in fertility is due to a lower share of income that is allocated for quantity and the increasing part is due to the greater use of babysitter services as parental education increases. Likewise, children’s education is positively affected by the price of quantity relative to the price of quality. However, the price of quality is now
increasing with parent’s education and, therefore, some additional conditions are necessary. Second, the positive relationship between parental education and children’s education along with the complementarity between parental time and schooling time in producing children’s education, implies that the time invested by parents also increases in parents’ education. Finally, the steepness of the relationship between parental education and parental time spent on children’s education can be sufficiently high such that it dominates the reduction in parental time allocated to raising children induced by the existence of market substitutes such as babysitters and child-care. In this event, the total time spent by parents on children increases with parental education. Deriving analytical conditions under which the total time spent on children is increasing with mother’s education is complicated, however, and, consequently, we illustrate the ability of the model to account for this empirical fact, while maintaining all of the desired results of the model using a numerical example.

Specifically, Figure 5 shows that fertility is U-shaped as a function of mother’s education and that children’s education can increase with mother’s education,
even when the marginal cost of education is increasing with mother’s education. The figure also shows that the sum of time devoted to both quantity and quality by the mother, that is the total time allocated to childcare is increasing with mother’s education. Finally, labor supply is increasing with mother’s education. Notice that the margin that allows parents to spend more time with their children and supply more hours to the labor market is the availability of housekeeping services, a service which highly educated mothers use more than mothers with lesser education.

4 Supportive Evidence

4.1 Labor Supply and Marriage Rates

In Section 2 we have established that the association between fertility and women’s education is U-shaped. Using the ACS sample for the years 2001-2009, we present here evidence in support of our model. We begin with labor supply. It is well established that the cross-sectional relationship between female labor supply and education is upward slopping. Figure 6 shows that usual hours worked per week during the past 12 months by women aged 25-50 indeed monotonically increases with education. Notice that the difference across the educational groups is quantitatively large. Among all women aged 25-50, women lacking a high school diploma work somewhat more than 21 hours per week, while women with advanced degrees work more than 36 hours per week.

The positive correlation between fertility and labor supply for women with at least a college degree, however, does not necessarily imply that highly educated women work more and have more children. Since only a small fraction of women gives birth in each year, it could be, for example, that women who gave birth in a given year do not work at all during that same year. To address this, Figure 6 also shows the cross-sectional relationship between education and usual hours

\footnote{We restrict the minimum age to 25 because women with advanced degrees might still be out of the labor market at younger ages.}
worked for the sub-sample of women age 15-50 who gave birth during the reference period14. As can be seen from the figure, highly educated mothers of newborns work more hours per week than less educated mothers with newborns.

Figure 6: Usual hours worked by women aged 25-50 and women with newborns, 2001-2009. Authors’ calculations using data from the American Community Survey.

We have thus far shown that highly educated women have higher fertility and work more hours, and that among mothers to newborns, usual hours worked increase with education. However, in relation to our model, one concern might be that it is in fact the spouses who respond to a birth by lowering their labor supply and in particular, that fathers to newborns, who are married to highly educated women reduce their labor supply by more than those who are married to women with lower levels of education. However, Figure 7 shows that this is not the case.

Figure 7 shows that men who are married to highly educated women work more than men who are married to women with lower levels of education, though men

14The figure remains intact if we restrict ages to 25-50.
who are married to women with advanced degrees work slightly less than men who are married to women with a college degree. Interestingly, fathers to newborns work more than husbands who do not have a newborn at home, regardless of the education of their wives. More importantly, usual hours worked by fathers to newborns monotonically increased with their wives’ education. Thus, the spouses of highly educated women are not the ones substituting in childcare for their working wives.

Another concern our model may raise is that marriage rates differ across different educational groups. If married women have higher fertility rates and if more educated women have higher marriage rates, more educated women’s higher fertility rates may not be caused by the availability of relatively cheaper childcare and housekeeping services, but rather simply by their higher marriage rates. Figure
Figure 8: Fraction of currently married women by age and education. Authors’ calculations using data from the American Community Survey.

The figure shows the fraction of currently married women by age-group and education. As can be seen, the fraction of currently married women increases with age at any level of education and for women above age 30, it increases with educational attainment only through college degrees. Notice that the fraction of women with advanced degrees who are currently married is somewhat lower than that of women with college degree. Thus, at least the increase in fertility between women with college degree and advanced degree cannot be attributed to marriage rates.

Another concern might be related to the mechanisms that govern these outcomes. For example, it might be that the increase in labor supply of mothers of newborns along the educational gradient, as shown in Figure 6, is driven by the pattern of unmarried mothers, while the reverse is true among married mothers. Figure 9
Figure 9: Usual hours worked of women with newborns by marital status, 2001-2009. Authors’ calculations using data from the American Community Survey.

presents usual hours worked for women aged 15-50 with a newborn by marital status.

Two features stand out from the figure. First, at any level of education, unmarried mothers work more than married mothers. Second, and more important for our theory, is fact that regardless of marital status, usual hours worked increase with women’s education. In sum, Figures 7 and 9 imply that household labor supply increases with mother’s education regardless of marital status.

4.2 Fertility, Education, and Inequality

In this section we provide evidence on the correlation between fertility of women at different level of education and earnings inequality. We do so by augmenting the regression models described in Section 2 with a measure of inequality. Our

15Both curves remain intact if we restrict age to 25-50.
measure of inequality is the 90-10 log wage differential for full-time full-year male workers, defined as working 35-plus hours per week and 40-plus weeks per year (Autor, Katz and Kearney 2008). We estimate this measure using data from the March CPS on all 50 U.S. states and the district of Columbia for the years 2001-2009 and allow it to vary by state and year, a total of 459 cells.

The marketization hypothesis suggests that fertility will increase among women whose income increases relative to that of childcare and housekeeping providers. Furthermore, it suggests that the larger the increase in this relative income, the stronger this effect will be. To test if this prediction is consistent with the data, we add inequality and interact inequality with the educational dummies to the specification in column (6) of Table 2. That is, we estimate the model:

\[b_{ist} = e'_{ist} \cdot \pi + X'_{ist} \beta + \gamma I_{st} + e'_{ist} \cdot I_{st} \cdot \lambda + \epsilon_{ist} \]

where \(I_{st} \) is our measure of inequality and \(X_{ist} \) includes family income and family income squared, marital status dummies, age dummies, year and state dummies. Because our measure of inequality varies by state-year, we cluster the standard errors at the state level. Notice that in this specification, \(\pi_j + \lambda_j I_{st} \) is the conditional probability of giving a birth in the \(j \) educational category, \(j \in \{1, 2, 3, 4, 5\} \), minus this probability in the omitted category, high-school dropouts, \(j = 1 \). Formally:

\[\pi_j + \lambda_j I_{st} = Pr(b_{ist} = 1|e_j, X) - Pr(b_{ist} = 1|e_1, X). \]

Figure 10 demonstrates our estimates for \(\pi_j + \lambda_j I_{st} \). Since this difference in probabilities depends on the level of inequality, we present these differences evaluated at the minimum, mean and maximum levels of inequality in our sample.

Three features emerge from this figure. First, the existence of an upward slopping relation between fertility and women’s education, which we documented in Section 2, is unaffected by the inclusion of inequality. Second, the upward shift of the curve when inequality increases suggests that the differences in the conditional

\[^{16} \text{Our results are essentially the same if we use the 90-10 log wage differential for full-time full-year female workers.} \]

\[^{17} \text{The minimum, mean and maximum levels of our measure of inequality are 1.25, 1.57 and 2.53, respectively.} \]
probability of giving a birth increase with inequality. Finally, the shift in the curve is the largest for women with advanced degrees, suggesting that an increase in inequality increases the difference in conditional probabilities by a larger magnitude for highly educated women, compared to women with intermediate levels of education.

Figure 10: The Partial Association between inequality and the probability of giving birth.

5 Concluding Remarks

We present new evidence about the cross-sectional relationship between fertility and women’s education in the U.S. between 2001 and 2009, showing that fertility rate, as a function of education, is U-shaped. This pattern is robust to controlling for a host of covariates such as family income, marital and age dummies, year and state of residence dummies. We also find that differences in the probability of giving a birth between highly educated women and less educated women are positively associated with income inequality and that these differences increase along the educational gradient.
Our model demonstrates how parents can substitute their own parenting time for market-purchased childcare. We show that highly educated women substitute a significant part of their own parenting with childcare. This enables them to have more children and work longer hours, consistent with the evidence. Furthermore, we show that these highly educated women not only work more and have more children, they invest more in the education of each of their children. This result may have important implications for the relationship between inequality and economic growth. In particular, de la Croix and Doepke (2003) argue that because poorer individuals have more children and invest less in the education of each child, higher inequality leads to lower growth. The evidence presented here that highly educated women choose larger families than women with intermediate levels of education may weaken or even undo this result. Nevertheless, this inquiry is beyond the scope of the current paper and is left for future research.

Our model can also explain the differences in fertility and time allocation of women between the U.S. and Europe. European women spend more time in home production and less time in labor market activities than American women (Freeman and Schettkat 2005). They also give birth to less children. For example, in 2009, the gap in TFR between the U.S. and EU members amounts to nearly one-half of a child per woman. Another noticeable difference between the U.S. and Europe is in the degree of income inequality. For example, according to OECD stat, the Gini coefficient after tax and transfers in the mid 2000s for the working age population was 0.37 in the U.S. while it was 0.31 for all European OECD members. Similarly, the 90-10 ratio during that period in the U.S. was 5.91 while for all European OECD members it was 3.84. In Hazan and Zoabi (2011) we study the aggregate behavior of the current model. Specifically, we compute the average fertility and time allocated to labor market and home production in our model economy. We then analyze the effect of a mean preserving spread of the distribution of women’s human capital. This is the model’s analogy to the higher income inequality in the U.S. compared to Europe. Consistent with the data, we find that an increase in inequality leads unambiguously to an increase in average fertility. The predictions of the model with respect to the average time allocated to home production and children depend on model’s parameters. We demonstrate, however, that the time allocated to the labor market and to child-
care increase in inequality while the sum of time allocated to childcare and home production decrease in inequality. We believe that research investigating differences between the U.S. and Europe along these lines in greater depth will likely be rewarding.
References

<table>
<thead>
<tr>
<th>Year</th>
<th>High-School Dropouts</th>
<th>High School Graduates</th>
<th>Some College</th>
<th>College Graduate</th>
<th>Advanced Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>2.36</td>
<td>2.23</td>
<td>1.88</td>
<td>1.82</td>
<td>2.08</td>
</tr>
<tr>
<td>2002</td>
<td>2.13</td>
<td>2.29</td>
<td>1.78</td>
<td>1.81</td>
<td>1.99</td>
</tr>
<tr>
<td>2003</td>
<td>2.14</td>
<td>1.98</td>
<td>1.70</td>
<td>1.72</td>
<td>1.99</td>
</tr>
<tr>
<td>2004</td>
<td>1.99</td>
<td>2.04</td>
<td>1.78</td>
<td>1.85</td>
<td>1.95</td>
</tr>
<tr>
<td>2005</td>
<td>2.37</td>
<td>2.07</td>
<td>1.81</td>
<td>1.84</td>
<td>1.96</td>
</tr>
<tr>
<td>2006</td>
<td>2.19</td>
<td>2.13</td>
<td>1.75</td>
<td>1.79</td>
<td>2.00</td>
</tr>
<tr>
<td>2007</td>
<td>2.27</td>
<td>2.09</td>
<td>1.76</td>
<td>1.74</td>
<td>1.99</td>
</tr>
<tr>
<td>2008</td>
<td>2.47</td>
<td>2.11</td>
<td>1.86</td>
<td>1.87</td>
<td>1.97</td>
</tr>
<tr>
<td>2009</td>
<td>2.32</td>
<td>2.09</td>
<td>1.81</td>
<td>1.74</td>
<td>1.93</td>
</tr>
</tbody>
</table>

Table 1: Authors’ calculations using data from the American Community Survey
Table 2: Linear probability models. All models are weighted by ACS sampling weights. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High School Graduates</td>
<td>0.013***</td>
<td>-0.002***</td>
<td>-0.016***</td>
<td>-0.016***</td>
<td>-0.017***</td>
<td>-0.015***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Some College</td>
<td>0.013***</td>
<td>-0.002***</td>
<td>-0.023***</td>
<td>-0.023***</td>
<td>-0.024***</td>
<td>-0.021***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>College Graduates</td>
<td>0.024***</td>
<td>0.005***</td>
<td>-0.014***</td>
<td>-0.014***</td>
<td>-0.015***</td>
<td>-0.009***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Advanced Degrees</td>
<td>0.029***</td>
<td>0.008***</td>
<td>0.001</td>
<td>0.001</td>
<td>0.000</td>
<td>0.007***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Family Income</td>
<td>-2.20e-07**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Income Squared</td>
<td>3.96e-13***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martial Status Dummies</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Age Dummies</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year Dummies</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>State Dummies</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- **Observations**: 3,198,937
- **R-squared**: 0.001, 0.012, 0.063, 0.063, 0.064, 0.065
THE CORRELATION BETWEEN GIVING A BIRTH IN THE PAST 12 MONTHS AND WOMEN’S EDUCATION

Dependant Variable: Birth in the past 12 months

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High School Graduates</td>
<td>0.147***</td>
<td>-0.004</td>
<td>-0.155***</td>
<td>-0.155***</td>
<td>-0.161***</td>
<td>-0.149***</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.007)</td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Some College</td>
<td>0.141***</td>
<td>-0.015**</td>
<td>-0.228***</td>
<td>-0.231***</td>
<td>-0.238***</td>
<td>-0.217***</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.006)</td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>College Graduates</td>
<td>0.241***</td>
<td>0.039***</td>
<td>-0.142***</td>
<td>-0.145***</td>
<td>-0.153***</td>
<td>-0.113***</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.006)</td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Advanced Degrees</td>
<td>0.282***</td>
<td>0.063***</td>
<td>-0.000</td>
<td>-0.004</td>
<td>-0.013</td>
<td>0.037***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.009)</td>
<td>(0.009)</td>
<td>(0.009)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Family Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.000***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.000)</td>
</tr>
<tr>
<td>Family Income Squared</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.000***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.000)</td>
</tr>
<tr>
<td>Martial Status Dummies</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Age Dummies</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year Dummies</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>State Dummies</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 3: Probit models. All models are weighted by ACS sampling weights. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
Appendix

We generalize the production function of raising children to a CES aggregate of parent’s time and child-care from the form:

$$n = [(t_M)^\rho + (t_B)^\rho]^{1/\rho}, \quad \rho \in (-\infty, 1]$$

Where the elasticity of substitution is $\frac{1}{1-\rho}$. t_M and t_B that minimize this cost function are:

$$t_M = \frac{h_i^{1-\rho}}{(h_i^{\rho} + h_i^{1-\rho})^{\rho}}n$$

and

$$t_B = \frac{h_i^{1-\rho}}{(h_i^{\rho} + h_i^{1-\rho})^{\rho}}n$$

Substituting these optimal factors into the cost function yields:

$$C(n, h_i, h_i^*) = \frac{hh_i^{1-\rho} + h_i^i h_i^{1-\rho}}{(h_i^{\rho} + h_i^{1-\rho})^{\rho}}n = p_n n$$

Where p_n is the price for quantity. Given the cost function, the solution to the optimization problem with regard to quantity is

$$n^* = \frac{h_i (1-\theta)}{2(p_n - \eta h_i)}.$$

Recall from the intuition described in the paper that marketization decreases the price for quantity for rich parents. Specifically, the engine for this result to emerge is that the price for quantity, p_n should at most increase with parent’s income but at a lower pace than parents income does. This implies that the ratio p_n/h_i should decline with h_i. Denote $R_i = p_n/h_i$. We get that
\[R_i = \frac{hh_i^{-\rho} + h_i^{1-\rho}}{\left(h_i^{-\rho} + h_i^{1-\rho}\right)^{\frac{1}{\rho}}} \]

Differentiating this ratio with respect to \(h_i \) and rearranging yields:

\[\frac{\partial R_i}{\partial h_i} = -hh_i^{\frac{2-\rho}{\rho}} \left(h_i^{-\rho} + h_i^{1-\rho}\right)^{-\frac{1}{\rho}} \]

Which is always negative.